hass-core/homeassistant/components/recorder/statistics.py
J. Nick Koston d33a303a83
Fix statistics schema µs precision auto repair being ineffective (#89902)
If a user manually migrated their database to MySQL or PostgresSQL
and incorrectly created the timestamp columns as float we would
fail to correct them to double because when we migrated to use
timestamps for the columns I missed that we needed to change the
columns and types for µs precision
2023-03-20 00:06:37 -04:00

2796 lines
98 KiB
Python

"""Statistics helper."""
from __future__ import annotations
from collections import defaultdict
from collections.abc import Callable, Iterable, Mapping, Sequence
import contextlib
import dataclasses
from datetime import datetime, timedelta
from functools import lru_cache, partial
from itertools import chain, groupby
import json
import logging
from operator import itemgetter
import os
import re
from statistics import mean
from typing import TYPE_CHECKING, Any, Literal, TypedDict, cast
from sqlalchemy import Select, and_, bindparam, func, lambda_stmt, select, text
from sqlalchemy.engine import Engine
from sqlalchemy.engine.row import Row
from sqlalchemy.exc import OperationalError, SQLAlchemyError, StatementError
from sqlalchemy.orm.session import Session
from sqlalchemy.sql.expression import literal_column
from sqlalchemy.sql.lambdas import StatementLambdaElement
import voluptuous as vol
from homeassistant.const import ATTR_UNIT_OF_MEASUREMENT
from homeassistant.core import HomeAssistant, callback, valid_entity_id
from homeassistant.exceptions import HomeAssistantError
from homeassistant.helpers.json import JSONEncoder
from homeassistant.helpers.storage import STORAGE_DIR
from homeassistant.helpers.typing import UNDEFINED, UndefinedType
from homeassistant.util import dt as dt_util
from homeassistant.util.unit_conversion import (
BaseUnitConverter,
DataRateConverter,
DistanceConverter,
ElectricCurrentConverter,
ElectricPotentialConverter,
EnergyConverter,
InformationConverter,
MassConverter,
PowerConverter,
PressureConverter,
SpeedConverter,
TemperatureConverter,
UnitlessRatioConverter,
VolumeConverter,
)
from .const import (
DOMAIN,
EVENT_RECORDER_5MIN_STATISTICS_GENERATED,
EVENT_RECORDER_HOURLY_STATISTICS_GENERATED,
SQLITE_MAX_BIND_VARS,
SupportedDialect,
)
from .db_schema import (
STATISTICS_TABLES,
Statistics,
StatisticsBase,
StatisticsMeta,
StatisticsRuns,
StatisticsShortTerm,
)
from .models import (
StatisticData,
StatisticDataTimestamp,
StatisticMetaData,
StatisticResult,
datetime_to_timestamp_or_none,
process_timestamp,
)
from .util import (
database_job_retry_wrapper,
execute,
execute_stmt_lambda_element,
get_instance,
retryable_database_job,
session_scope,
)
if TYPE_CHECKING:
from . import Recorder
QUERY_STATISTICS = (
Statistics.metadata_id,
Statistics.start_ts,
Statistics.mean,
Statistics.min,
Statistics.max,
Statistics.last_reset_ts,
Statistics.state,
Statistics.sum,
)
QUERY_STATISTICS_SHORT_TERM = (
StatisticsShortTerm.metadata_id,
StatisticsShortTerm.start_ts,
StatisticsShortTerm.mean,
StatisticsShortTerm.min,
StatisticsShortTerm.max,
StatisticsShortTerm.last_reset_ts,
StatisticsShortTerm.state,
StatisticsShortTerm.sum,
)
QUERY_STATISTICS_SUMMARY_MEAN = (
StatisticsShortTerm.metadata_id,
func.avg(StatisticsShortTerm.mean),
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
func.min(StatisticsShortTerm.min),
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
func.max(StatisticsShortTerm.max),
)
QUERY_STATISTICS_SUMMARY_SUM = (
StatisticsShortTerm.metadata_id,
StatisticsShortTerm.start_ts,
StatisticsShortTerm.last_reset_ts,
StatisticsShortTerm.state,
StatisticsShortTerm.sum,
func.row_number()
.over( # type: ignore[no-untyped-call]
partition_by=StatisticsShortTerm.metadata_id,
order_by=StatisticsShortTerm.start_ts.desc(),
)
.label("rownum"),
)
STATISTIC_UNIT_TO_UNIT_CONVERTER: dict[str | None, type[BaseUnitConverter]] = {
**{unit: DataRateConverter for unit in DataRateConverter.VALID_UNITS},
**{unit: DistanceConverter for unit in DistanceConverter.VALID_UNITS},
**{unit: ElectricCurrentConverter for unit in ElectricCurrentConverter.VALID_UNITS},
**{
unit: ElectricPotentialConverter
for unit in ElectricPotentialConverter.VALID_UNITS
},
**{unit: EnergyConverter for unit in EnergyConverter.VALID_UNITS},
**{unit: InformationConverter for unit in InformationConverter.VALID_UNITS},
**{unit: MassConverter for unit in MassConverter.VALID_UNITS},
**{unit: PowerConverter for unit in PowerConverter.VALID_UNITS},
**{unit: PressureConverter for unit in PressureConverter.VALID_UNITS},
**{unit: SpeedConverter for unit in SpeedConverter.VALID_UNITS},
**{unit: TemperatureConverter for unit in TemperatureConverter.VALID_UNITS},
**{unit: UnitlessRatioConverter for unit in UnitlessRatioConverter.VALID_UNITS},
**{unit: VolumeConverter for unit in VolumeConverter.VALID_UNITS},
}
_LOGGER = logging.getLogger(__name__)
class BaseStatisticsRow(TypedDict, total=False):
"""A processed row of statistic data."""
start: float
class StatisticsRow(BaseStatisticsRow, total=False):
"""A processed row of statistic data."""
end: float
last_reset: float | None
state: float | None
sum: float | None
min: float | None
max: float | None
mean: float | None
def _get_unit_class(unit: str | None) -> str | None:
"""Get corresponding unit class from from the statistics unit."""
if converter := STATISTIC_UNIT_TO_UNIT_CONVERTER.get(unit):
return converter.UNIT_CLASS
return None
def get_display_unit(
hass: HomeAssistant,
statistic_id: str,
statistic_unit: str | None,
) -> str | None:
"""Return the unit which the statistic will be displayed in."""
if (converter := STATISTIC_UNIT_TO_UNIT_CONVERTER.get(statistic_unit)) is None:
return statistic_unit
state_unit: str | None = statistic_unit
if state := hass.states.get(statistic_id):
state_unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
if state_unit == statistic_unit or state_unit not in converter.VALID_UNITS:
# Guard against invalid state unit in the DB
return statistic_unit
return state_unit
def _get_statistic_to_display_unit_converter(
statistic_unit: str | None,
state_unit: str | None,
requested_units: dict[str, str] | None,
) -> Callable[[float | None], float | None] | None:
"""Prepare a converter from the statistics unit to display unit."""
if (converter := STATISTIC_UNIT_TO_UNIT_CONVERTER.get(statistic_unit)) is None:
return None
display_unit: str | None
unit_class = converter.UNIT_CLASS
if requested_units and unit_class in requested_units:
display_unit = requested_units[unit_class]
else:
display_unit = state_unit
if display_unit not in converter.VALID_UNITS:
# Guard against invalid state unit in the DB
return None
if display_unit == statistic_unit:
return None
convert = converter.convert
def _from_normalized_unit(val: float | None) -> float | None:
"""Return val."""
if val is None:
return val
return convert(val, statistic_unit, display_unit)
return _from_normalized_unit
def _get_display_to_statistic_unit_converter(
display_unit: str | None,
statistic_unit: str | None,
) -> Callable[[float], float]:
"""Prepare a converter from the display unit to the statistics unit."""
def no_conversion(val: float) -> float:
"""Return val."""
return val
if (converter := STATISTIC_UNIT_TO_UNIT_CONVERTER.get(statistic_unit)) is None:
return no_conversion
return partial(converter.convert, from_unit=display_unit, to_unit=statistic_unit)
def _get_unit_converter(
from_unit: str, to_unit: str
) -> Callable[[float | None], float | None]:
"""Prepare a converter from a unit to another unit."""
def convert_units(
val: float | None, conv: type[BaseUnitConverter], from_unit: str, to_unit: str
) -> float | None:
"""Return converted val."""
if val is None:
return val
return conv.convert(val, from_unit=from_unit, to_unit=to_unit)
for conv in STATISTIC_UNIT_TO_UNIT_CONVERTER.values():
if from_unit in conv.VALID_UNITS and to_unit in conv.VALID_UNITS:
return partial(
convert_units, conv=conv, from_unit=from_unit, to_unit=to_unit
)
raise HomeAssistantError
def can_convert_units(from_unit: str | None, to_unit: str | None) -> bool:
"""Return True if it's possible to convert from from_unit to to_unit."""
for converter in STATISTIC_UNIT_TO_UNIT_CONVERTER.values():
if from_unit in converter.VALID_UNITS and to_unit in converter.VALID_UNITS:
return True
return False
@dataclasses.dataclass
class PlatformCompiledStatistics:
"""Compiled Statistics from a platform."""
platform_stats: list[StatisticResult]
current_metadata: dict[str, tuple[int, StatisticMetaData]]
def split_statistic_id(entity_id: str) -> list[str]:
"""Split a state entity ID into domain and object ID."""
return entity_id.split(":", 1)
VALID_STATISTIC_ID = re.compile(r"^(?!.+__)(?!_)[\da-z_]+(?<!_):(?!_)[\da-z_]+(?<!_)$")
def valid_statistic_id(statistic_id: str) -> bool:
"""Test if a statistic ID is a valid format.
Format: <domain>:<statistic> where both are slugs.
"""
return VALID_STATISTIC_ID.match(statistic_id) is not None
def validate_statistic_id(value: str) -> str:
"""Validate statistic ID."""
if valid_statistic_id(value):
return value
raise vol.Invalid(f"Statistics ID {value} is an invalid statistic ID")
@dataclasses.dataclass
class ValidationIssue:
"""Error or warning message."""
type: str
data: dict[str, str | None] | None = None
def as_dict(self) -> dict:
"""Return dictionary version."""
return dataclasses.asdict(self)
def get_start_time() -> datetime:
"""Return start time."""
now = dt_util.utcnow()
current_period_minutes = now.minute - now.minute % 5
current_period = now.replace(minute=current_period_minutes, second=0, microsecond=0)
last_period = current_period - timedelta(minutes=5)
return last_period
def _find_duplicates(
session: Session, table: type[StatisticsBase]
) -> tuple[list[int], list[dict]]:
"""Find duplicated statistics."""
subquery = (
session.query(
table.start,
table.metadata_id,
literal_column("1").label("is_duplicate"),
)
.group_by(table.metadata_id, table.start)
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
.having(func.count() > 1)
.subquery()
)
query = (
session.query(
table.id,
table.metadata_id,
table.created,
table.start,
table.mean,
table.min,
table.max,
table.last_reset,
table.state,
table.sum,
)
.outerjoin(
subquery,
(subquery.c.metadata_id == table.metadata_id)
& (subquery.c.start == table.start),
)
.filter(subquery.c.is_duplicate == 1)
.order_by(table.metadata_id, table.start, table.id.desc())
.limit(1000 * SQLITE_MAX_BIND_VARS)
)
duplicates = execute(query)
original_as_dict = {}
start = None
metadata_id = None
duplicate_ids: list[int] = []
non_identical_duplicates_as_dict: list[dict] = []
if not duplicates:
return (duplicate_ids, non_identical_duplicates_as_dict)
def columns_to_dict(duplicate: Row) -> dict:
"""Convert a SQLAlchemy row to dict."""
dict_ = {}
for key in (
"id",
"metadata_id",
"start",
"created",
"mean",
"min",
"max",
"last_reset",
"state",
"sum",
):
dict_[key] = getattr(duplicate, key)
return dict_
def compare_statistic_rows(row1: dict, row2: dict) -> bool:
"""Compare two statistics rows, ignoring id and created."""
ignore_keys = {"id", "created"}
keys1 = set(row1).difference(ignore_keys)
keys2 = set(row2).difference(ignore_keys)
return keys1 == keys2 and all(row1[k] == row2[k] for k in keys1)
for duplicate in duplicates:
if start != duplicate.start or metadata_id != duplicate.metadata_id:
original_as_dict = columns_to_dict(duplicate)
start = duplicate.start
metadata_id = duplicate.metadata_id
continue
duplicate_as_dict = columns_to_dict(duplicate)
duplicate_ids.append(duplicate.id)
if not compare_statistic_rows(original_as_dict, duplicate_as_dict):
non_identical_duplicates_as_dict.append(
{"duplicate": duplicate_as_dict, "original": original_as_dict}
)
return (duplicate_ids, non_identical_duplicates_as_dict)
def _delete_duplicates_from_table(
session: Session, table: type[StatisticsBase]
) -> tuple[int, list[dict]]:
"""Identify and delete duplicated statistics from a specified table."""
all_non_identical_duplicates: list[dict] = []
total_deleted_rows = 0
while True:
duplicate_ids, non_identical_duplicates = _find_duplicates(session, table)
if not duplicate_ids:
break
all_non_identical_duplicates.extend(non_identical_duplicates)
for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS):
deleted_rows = (
session.query(table)
.filter(table.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS]))
.delete(synchronize_session=False)
)
total_deleted_rows += deleted_rows
return (total_deleted_rows, all_non_identical_duplicates)
@database_job_retry_wrapper("delete statistics duplicates", 3)
def delete_statistics_duplicates(
instance: Recorder, hass: HomeAssistant, session: Session
) -> None:
"""Identify and delete duplicated statistics.
A backup will be made of duplicated statistics before it is deleted.
"""
deleted_statistics_rows, non_identical_duplicates = _delete_duplicates_from_table(
session, Statistics
)
if deleted_statistics_rows:
_LOGGER.info("Deleted %s duplicated statistics rows", deleted_statistics_rows)
if non_identical_duplicates:
isotime = dt_util.utcnow().isoformat()
backup_file_name = f"deleted_statistics.{isotime}.json"
backup_path = hass.config.path(STORAGE_DIR, backup_file_name)
os.makedirs(os.path.dirname(backup_path), exist_ok=True)
with open(backup_path, "w", encoding="utf8") as backup_file:
json.dump(
non_identical_duplicates,
backup_file,
indent=4,
sort_keys=True,
cls=JSONEncoder,
)
_LOGGER.warning(
(
"Deleted %s non identical duplicated %s rows, a backup of the deleted"
" rows has been saved to %s"
),
len(non_identical_duplicates),
Statistics.__tablename__,
backup_path,
)
deleted_short_term_statistics_rows, _ = _delete_duplicates_from_table(
session, StatisticsShortTerm
)
if deleted_short_term_statistics_rows:
_LOGGER.warning(
"Deleted duplicated short term statistic rows, please report at %s",
"https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue+label%3A%22integration%3A+recorder%22",
)
def _find_statistics_meta_duplicates(session: Session) -> list[int]:
"""Find duplicated statistics_meta."""
# When querying the database, be careful to only explicitly query for columns
# which were present in schema version 29. If querying the table, SQLAlchemy
# will refer to future columns.
subquery = (
session.query(
StatisticsMeta.statistic_id,
literal_column("1").label("is_duplicate"),
)
.group_by(StatisticsMeta.statistic_id)
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
.having(func.count() > 1)
.subquery()
)
query = (
session.query(StatisticsMeta.statistic_id, StatisticsMeta.id)
.outerjoin(
subquery,
(subquery.c.statistic_id == StatisticsMeta.statistic_id),
)
.filter(subquery.c.is_duplicate == 1)
.order_by(StatisticsMeta.statistic_id, StatisticsMeta.id.desc())
.limit(1000 * SQLITE_MAX_BIND_VARS)
)
duplicates = execute(query)
statistic_id = None
duplicate_ids: list[int] = []
if not duplicates:
return duplicate_ids
for duplicate in duplicates:
if statistic_id != duplicate.statistic_id:
statistic_id = duplicate.statistic_id
continue
duplicate_ids.append(duplicate.id)
return duplicate_ids
def _delete_statistics_meta_duplicates(session: Session) -> int:
"""Identify and delete duplicated statistics from a specified table."""
total_deleted_rows = 0
while True:
duplicate_ids = _find_statistics_meta_duplicates(session)
if not duplicate_ids:
break
for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS):
deleted_rows = (
session.query(StatisticsMeta)
.filter(
StatisticsMeta.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS])
)
.delete(synchronize_session=False)
)
total_deleted_rows += deleted_rows
return total_deleted_rows
def delete_statistics_meta_duplicates(instance: Recorder, session: Session) -> None:
"""Identify and delete duplicated statistics_meta.
This is used when migrating from schema version 28 to schema version 29.
"""
deleted_statistics_rows = _delete_statistics_meta_duplicates(session)
if deleted_statistics_rows:
statistics_meta_manager = instance.statistics_meta_manager
statistics_meta_manager.reset()
statistics_meta_manager.load(session)
_LOGGER.info(
"Deleted %s duplicated statistics_meta rows", deleted_statistics_rows
)
def _compile_hourly_statistics_summary_mean_stmt(
start_time_ts: float, end_time_ts: float
) -> StatementLambdaElement:
"""Generate the summary mean statement for hourly statistics."""
return lambda_stmt(
lambda: select(*QUERY_STATISTICS_SUMMARY_MEAN)
.filter(StatisticsShortTerm.start_ts >= start_time_ts)
.filter(StatisticsShortTerm.start_ts < end_time_ts)
.group_by(StatisticsShortTerm.metadata_id)
.order_by(StatisticsShortTerm.metadata_id)
)
def _compile_hourly_statistics_last_sum_stmt(
start_time_ts: float, end_time_ts: float
) -> StatementLambdaElement:
"""Generate the summary mean statement for hourly statistics."""
return lambda_stmt(
lambda: select(
subquery := (
select(*QUERY_STATISTICS_SUMMARY_SUM)
.filter(StatisticsShortTerm.start_ts >= start_time_ts)
.filter(StatisticsShortTerm.start_ts < end_time_ts)
.subquery()
)
)
.filter(subquery.c.rownum == 1)
.order_by(subquery.c.metadata_id)
)
def _compile_hourly_statistics(session: Session, start: datetime) -> None:
"""Compile hourly statistics.
This will summarize 5-minute statistics for one hour:
- average, min max is computed by a database query
- sum is taken from the last 5-minute entry during the hour
"""
start_time = start.replace(minute=0)
start_time_ts = start_time.timestamp()
end_time = start_time + timedelta(hours=1)
end_time_ts = end_time.timestamp()
# Compute last hour's average, min, max
summary: dict[int, StatisticDataTimestamp] = {}
stmt = _compile_hourly_statistics_summary_mean_stmt(start_time_ts, end_time_ts)
stats = execute_stmt_lambda_element(session, stmt)
if stats:
for stat in stats:
metadata_id, _mean, _min, _max = stat
summary[metadata_id] = {
"start_ts": start_time_ts,
"mean": _mean,
"min": _min,
"max": _max,
}
stmt = _compile_hourly_statistics_last_sum_stmt(start_time_ts, end_time_ts)
# Get last hour's last sum
stats = execute_stmt_lambda_element(session, stmt)
if stats:
for stat in stats:
metadata_id, start, last_reset_ts, state, _sum, _ = stat
if metadata_id in summary:
summary[metadata_id].update(
{
"last_reset_ts": last_reset_ts,
"state": state,
"sum": _sum,
}
)
else:
summary[metadata_id] = {
"start_ts": start_time_ts,
"last_reset_ts": last_reset_ts,
"state": state,
"sum": _sum,
}
# Insert compiled hourly statistics in the database
session.add_all(
Statistics.from_stats_ts(metadata_id, summary_item)
for metadata_id, summary_item in summary.items()
)
@retryable_database_job("compile missing statistics")
def compile_missing_statistics(instance: Recorder) -> bool:
"""Compile missing statistics."""
now = dt_util.utcnow()
period_size = 5
last_period_minutes = now.minute - now.minute % period_size
last_period = now.replace(minute=last_period_minutes, second=0, microsecond=0)
start = now - timedelta(days=instance.keep_days)
start = start.replace(minute=0, second=0, microsecond=0)
# Commit every 12 hours of data
commit_interval = 60 / period_size * 12
with session_scope(
session=instance.get_session(),
exception_filter=_filter_unique_constraint_integrity_error(instance),
) as session:
# Find the newest statistics run, if any
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
if last_run := session.query(func.max(StatisticsRuns.start)).scalar():
start = max(start, process_timestamp(last_run) + timedelta(minutes=5))
periods_without_commit = 0
while start < last_period:
periods_without_commit += 1
end = start + timedelta(minutes=period_size)
_LOGGER.debug("Compiling missing statistics for %s-%s", start, end)
modified_statistic_ids = _compile_statistics(
instance, session, start, end >= last_period
)
if periods_without_commit == commit_interval or modified_statistic_ids:
session.commit()
session.expunge_all()
periods_without_commit = 0
start = end
return True
@retryable_database_job("compile statistics")
def compile_statistics(instance: Recorder, start: datetime, fire_events: bool) -> bool:
"""Compile 5-minute statistics for all integrations with a recorder platform.
The actual calculation is delegated to the platforms.
"""
# Return if we already have 5-minute statistics for the requested period
with session_scope(
session=instance.get_session(),
exception_filter=_filter_unique_constraint_integrity_error(instance),
) as session:
modified_statistic_ids = _compile_statistics(
instance, session, start, fire_events
)
if modified_statistic_ids:
# In the rare case that we have modified statistic_ids, we reload the modified
# statistics meta data into the cache in a fresh session to ensure that the
# cache is up to date and future calls to get statistics meta data will
# not have to hit the database again.
with session_scope(session=instance.get_session(), read_only=True) as session:
instance.statistics_meta_manager.get_many(session, modified_statistic_ids)
return True
def _compile_statistics(
instance: Recorder, session: Session, start: datetime, fire_events: bool
) -> set[str]:
"""Compile 5-minute statistics for all integrations with a recorder platform.
This is a helper function for compile_statistics and compile_missing_statistics
that does not retry on database errors since both callers already retry.
returns a set of modified statistic_ids if any were modified.
"""
assert start.tzinfo == dt_util.UTC, "start must be in UTC"
end = start + timedelta(minutes=5)
statistics_meta_manager = instance.statistics_meta_manager
modified_statistic_ids: set[str] = set()
# Return if we already have 5-minute statistics for the requested period
if session.query(StatisticsRuns).filter_by(start=start).first():
_LOGGER.debug("Statistics already compiled for %s-%s", start, end)
return modified_statistic_ids
_LOGGER.debug("Compiling statistics for %s-%s", start, end)
platform_stats: list[StatisticResult] = []
current_metadata: dict[str, tuple[int, StatisticMetaData]] = {}
# Collect statistics from all platforms implementing support
for domain, platform in instance.hass.data[DOMAIN].recorder_platforms.items():
if not hasattr(platform, "compile_statistics"):
continue
compiled: PlatformCompiledStatistics = platform.compile_statistics(
instance.hass, start, end
)
_LOGGER.debug(
"Statistics for %s during %s-%s: %s",
domain,
start,
end,
compiled.platform_stats,
)
platform_stats.extend(compiled.platform_stats)
current_metadata.update(compiled.current_metadata)
# Insert collected statistics in the database
for stats in platform_stats:
modified_statistic_id, metadata_id = statistics_meta_manager.update_or_add(
session, stats["meta"], current_metadata
)
if modified_statistic_id is not None:
modified_statistic_ids.add(modified_statistic_id)
_insert_statistics(
session,
StatisticsShortTerm,
metadata_id,
stats["stat"],
)
if start.minute == 55:
# A full hour is ready, summarize it
_compile_hourly_statistics(session, start)
session.add(StatisticsRuns(start=start))
if fire_events:
instance.hass.bus.fire(EVENT_RECORDER_5MIN_STATISTICS_GENERATED)
if start.minute == 55:
instance.hass.bus.fire(EVENT_RECORDER_HOURLY_STATISTICS_GENERATED)
return modified_statistic_ids
def _adjust_sum_statistics(
session: Session,
table: type[StatisticsBase],
metadata_id: int,
start_time: datetime,
adj: float,
) -> None:
"""Adjust statistics in the database."""
start_time_ts = start_time.timestamp()
try:
session.query(table).filter_by(metadata_id=metadata_id).filter(
table.start_ts >= start_time_ts
).update(
{
table.sum: table.sum + adj,
},
synchronize_session=False,
)
except SQLAlchemyError:
_LOGGER.exception(
"Unexpected exception when updating statistics %s",
id,
)
def _insert_statistics(
session: Session,
table: type[StatisticsBase],
metadata_id: int,
statistic: StatisticData,
) -> None:
"""Insert statistics in the database."""
try:
session.add(table.from_stats(metadata_id, statistic))
except SQLAlchemyError:
_LOGGER.exception(
"Unexpected exception when inserting statistics %s:%s ",
metadata_id,
statistic,
)
def _update_statistics(
session: Session,
table: type[StatisticsBase],
stat_id: int,
statistic: StatisticData,
) -> None:
"""Insert statistics in the database."""
try:
session.query(table).filter_by(id=stat_id).update(
{
table.mean: statistic.get("mean"),
table.min: statistic.get("min"),
table.max: statistic.get("max"),
table.last_reset_ts: datetime_to_timestamp_or_none(
statistic.get("last_reset")
),
table.state: statistic.get("state"),
table.sum: statistic.get("sum"),
},
synchronize_session=False,
)
except SQLAlchemyError:
_LOGGER.exception(
"Unexpected exception when updating statistics %s:%s ",
stat_id,
statistic,
)
def get_metadata_with_session(
instance: Recorder,
session: Session,
*,
statistic_ids: set[str] | None = None,
statistic_type: Literal["mean"] | Literal["sum"] | None = None,
statistic_source: str | None = None,
) -> dict[str, tuple[int, StatisticMetaData]]:
"""Fetch meta data.
Returns a dict of (metadata_id, StatisticMetaData) tuples indexed by statistic_id.
If statistic_ids is given, fetch metadata only for the listed statistics_ids.
If statistic_type is given, fetch metadata only for statistic_ids supporting it.
"""
return instance.statistics_meta_manager.get_many(
session,
statistic_ids=statistic_ids,
statistic_type=statistic_type,
statistic_source=statistic_source,
)
def get_metadata(
hass: HomeAssistant,
*,
statistic_ids: set[str] | None = None,
statistic_type: Literal["mean"] | Literal["sum"] | None = None,
statistic_source: str | None = None,
) -> dict[str, tuple[int, StatisticMetaData]]:
"""Return metadata for statistic_ids."""
with session_scope(hass=hass, read_only=True) as session:
return get_metadata_with_session(
get_instance(hass),
session,
statistic_ids=statistic_ids,
statistic_type=statistic_type,
statistic_source=statistic_source,
)
def clear_statistics(instance: Recorder, statistic_ids: list[str]) -> None:
"""Clear statistics for a list of statistic_ids."""
with session_scope(session=instance.get_session()) as session:
instance.statistics_meta_manager.delete(session, statistic_ids)
def update_statistics_metadata(
instance: Recorder,
statistic_id: str,
new_statistic_id: str | None | UndefinedType,
new_unit_of_measurement: str | None | UndefinedType,
) -> None:
"""Update statistics metadata for a statistic_id."""
statistics_meta_manager = instance.statistics_meta_manager
if new_unit_of_measurement is not UNDEFINED:
with session_scope(session=instance.get_session()) as session:
statistics_meta_manager.update_unit_of_measurement(
session, statistic_id, new_unit_of_measurement
)
if new_statistic_id is not UNDEFINED and new_statistic_id is not None:
with session_scope(
session=instance.get_session(),
exception_filter=_filter_unique_constraint_integrity_error(instance),
) as session:
statistics_meta_manager.update_statistic_id(
session, DOMAIN, statistic_id, new_statistic_id
)
async def async_list_statistic_ids(
hass: HomeAssistant,
statistic_ids: set[str] | None = None,
statistic_type: Literal["mean"] | Literal["sum"] | None = None,
) -> list[dict]:
"""Return all statistic_ids (or filtered one) and unit of measurement.
Queries the database for existing statistic_ids, as well as integrations with
a recorder platform for statistic_ids which will be added in the next statistics
period.
"""
instance = get_instance(hass)
if statistic_ids is not None:
# Try to get the results from the cache since there is nearly
# always a cache hit.
statistics_meta_manager = instance.statistics_meta_manager
metadata = statistics_meta_manager.get_from_cache_threadsafe(statistic_ids)
if not statistic_ids.difference(metadata):
result = _statistic_by_id_from_metadata(hass, metadata)
return _flatten_list_statistic_ids_metadata_result(result)
return await instance.async_add_executor_job(
list_statistic_ids,
hass,
statistic_ids,
statistic_type,
)
def _statistic_by_id_from_metadata(
hass: HomeAssistant,
metadata: dict[str, tuple[int, StatisticMetaData]],
) -> dict[str, dict[str, Any]]:
"""Return a list of results for a given metadata dict."""
return {
meta["statistic_id"]: {
"display_unit_of_measurement": get_display_unit(
hass, meta["statistic_id"], meta["unit_of_measurement"]
),
"has_mean": meta["has_mean"],
"has_sum": meta["has_sum"],
"name": meta["name"],
"source": meta["source"],
"unit_class": _get_unit_class(meta["unit_of_measurement"]),
"unit_of_measurement": meta["unit_of_measurement"],
}
for _, meta in metadata.values()
}
def _flatten_list_statistic_ids_metadata_result(
result: dict[str, dict[str, Any]]
) -> list[dict]:
"""Return a flat dict of metadata."""
return [
{
"statistic_id": _id,
"display_unit_of_measurement": info["display_unit_of_measurement"],
"has_mean": info["has_mean"],
"has_sum": info["has_sum"],
"name": info.get("name"),
"source": info["source"],
"statistics_unit_of_measurement": info["unit_of_measurement"],
"unit_class": info["unit_class"],
}
for _id, info in result.items()
]
def list_statistic_ids(
hass: HomeAssistant,
statistic_ids: set[str] | None = None,
statistic_type: Literal["mean"] | Literal["sum"] | None = None,
) -> list[dict]:
"""Return all statistic_ids (or filtered one) and unit of measurement.
Queries the database for existing statistic_ids, as well as integrations with
a recorder platform for statistic_ids which will be added in the next statistics
period.
"""
result = {}
instance = get_instance(hass)
statistics_meta_manager = instance.statistics_meta_manager
# Query the database
with session_scope(hass=hass, read_only=True) as session:
metadata = statistics_meta_manager.get_many(
session, statistic_type=statistic_type, statistic_ids=statistic_ids
)
result = _statistic_by_id_from_metadata(hass, metadata)
if not statistic_ids or statistic_ids.difference(result):
# If we want all statistic_ids, or some are missing, we need to query
# the integrations for the missing ones.
#
# Query all integrations with a registered recorder platform
for platform in hass.data[DOMAIN].recorder_platforms.values():
if not hasattr(platform, "list_statistic_ids"):
continue
platform_statistic_ids = platform.list_statistic_ids(
hass, statistic_ids=statistic_ids, statistic_type=statistic_type
)
for key, meta in platform_statistic_ids.items():
if key in result:
# The database has a higher priority than the integration
continue
result[key] = {
"display_unit_of_measurement": meta["unit_of_measurement"],
"has_mean": meta["has_mean"],
"has_sum": meta["has_sum"],
"name": meta["name"],
"source": meta["source"],
"unit_class": _get_unit_class(meta["unit_of_measurement"]),
"unit_of_measurement": meta["unit_of_measurement"],
}
# Return a list of statistic_id + metadata
return _flatten_list_statistic_ids_metadata_result(result)
def _reduce_statistics(
stats: dict[str, list[StatisticsRow]],
same_period: Callable[[float, float], bool],
period_start_end: Callable[[float], tuple[float, float]],
period: timedelta,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Reduce hourly statistics to daily or monthly statistics."""
result: dict[str, list[StatisticsRow]] = defaultdict(list)
period_seconds = period.total_seconds()
_want_mean = "mean" in types
_want_min = "min" in types
_want_max = "max" in types
_want_last_reset = "last_reset" in types
_want_state = "state" in types
_want_sum = "sum" in types
for statistic_id, stat_list in stats.items():
max_values: list[float] = []
mean_values: list[float] = []
min_values: list[float] = []
prev_stat: StatisticsRow = stat_list[0]
fake_entry: StatisticsRow = {"start": stat_list[-1]["start"] + period_seconds}
# Loop over the hourly statistics + a fake entry to end the period
for statistic in chain(stat_list, (fake_entry,)):
if not same_period(prev_stat["start"], statistic["start"]):
start, end = period_start_end(prev_stat["start"])
# The previous statistic was the last entry of the period
row: StatisticsRow = {
"start": start,
"end": end,
}
if _want_mean:
row["mean"] = mean(mean_values) if mean_values else None
if _want_min:
row["min"] = min(min_values) if min_values else None
if _want_max:
row["max"] = max(max_values) if max_values else None
if _want_last_reset:
row["last_reset"] = prev_stat.get("last_reset")
if _want_state:
row["state"] = prev_stat.get("state")
if _want_sum:
row["sum"] = prev_stat["sum"]
result[statistic_id].append(row)
max_values = []
mean_values = []
min_values = []
if _want_max and (_max := statistic.get("max")) is not None:
max_values.append(_max)
if _want_mean and (_mean := statistic.get("mean")) is not None:
mean_values.append(_mean)
if _want_min and (_min := statistic.get("min")) is not None:
min_values.append(_min)
prev_stat = statistic
return result
def reduce_day_ts_factory() -> (
tuple[
Callable[[float, float], bool],
Callable[[float], tuple[float, float]],
]
):
"""Return functions to match same day and day start end."""
_boundries: tuple[float, float] = (0, 0)
# We have to recreate _local_from_timestamp in the closure in case the timezone changes
_local_from_timestamp = partial(
datetime.fromtimestamp, tz=dt_util.DEFAULT_TIME_ZONE
)
def _same_day_ts(time1: float, time2: float) -> bool:
"""Return True if time1 and time2 are in the same date."""
nonlocal _boundries
if not _boundries[0] <= time1 < _boundries[1]:
_boundries = _day_start_end_ts_cached(time1)
return _boundries[0] <= time2 < _boundries[1]
def _day_start_end_ts(time: float) -> tuple[float, float]:
"""Return the start and end of the period (day) time is within."""
start_local = _local_from_timestamp(time).replace(
hour=0, minute=0, second=0, microsecond=0
)
return (
start_local.astimezone(dt_util.UTC).timestamp(),
(start_local + timedelta(days=1)).astimezone(dt_util.UTC).timestamp(),
)
# We create _day_start_end_ts_cached in the closure in case the timezone changes
_day_start_end_ts_cached = lru_cache(maxsize=6)(_day_start_end_ts)
return _same_day_ts, _day_start_end_ts_cached
def _reduce_statistics_per_day(
stats: dict[str, list[StatisticsRow]],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Reduce hourly statistics to daily statistics."""
_same_day_ts, _day_start_end_ts = reduce_day_ts_factory()
return _reduce_statistics(
stats, _same_day_ts, _day_start_end_ts, timedelta(days=1), types
)
def reduce_week_ts_factory() -> (
tuple[
Callable[[float, float], bool],
Callable[[float], tuple[float, float]],
]
):
"""Return functions to match same week and week start end."""
_boundries: tuple[float, float] = (0, 0)
# We have to recreate _local_from_timestamp in the closure in case the timezone changes
_local_from_timestamp = partial(
datetime.fromtimestamp, tz=dt_util.DEFAULT_TIME_ZONE
)
def _same_week_ts(time1: float, time2: float) -> bool:
"""Return True if time1 and time2 are in the same year and week."""
nonlocal _boundries
if not _boundries[0] <= time1 < _boundries[1]:
_boundries = _week_start_end_ts_cached(time1)
return _boundries[0] <= time2 < _boundries[1]
def _week_start_end_ts(time: float) -> tuple[float, float]:
"""Return the start and end of the period (week) time is within."""
nonlocal _boundries
time_local = _local_from_timestamp(time)
start_local = time_local.replace(
hour=0, minute=0, second=0, microsecond=0
) - timedelta(days=time_local.weekday())
return (
start_local.astimezone(dt_util.UTC).timestamp(),
(start_local + timedelta(days=7)).astimezone(dt_util.UTC).timestamp(),
)
# We create _week_start_end_ts_cached in the closure in case the timezone changes
_week_start_end_ts_cached = lru_cache(maxsize=6)(_week_start_end_ts)
return _same_week_ts, _week_start_end_ts_cached
def _reduce_statistics_per_week(
stats: dict[str, list[StatisticsRow]],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Reduce hourly statistics to weekly statistics."""
_same_week_ts, _week_start_end_ts = reduce_week_ts_factory()
return _reduce_statistics(
stats, _same_week_ts, _week_start_end_ts, timedelta(days=7), types
)
def reduce_month_ts_factory() -> (
tuple[
Callable[[float, float], bool],
Callable[[float], tuple[float, float]],
]
):
"""Return functions to match same month and month start end."""
_boundries: tuple[float, float] = (0, 0)
# We have to recreate _local_from_timestamp in the closure in case the timezone changes
_local_from_timestamp = partial(
datetime.fromtimestamp, tz=dt_util.DEFAULT_TIME_ZONE
)
def _same_month_ts(time1: float, time2: float) -> bool:
"""Return True if time1 and time2 are in the same year and month."""
nonlocal _boundries
if not _boundries[0] <= time1 < _boundries[1]:
_boundries = _month_start_end_ts_cached(time1)
return _boundries[0] <= time2 < _boundries[1]
def _month_start_end_ts(time: float) -> tuple[float, float]:
"""Return the start and end of the period (month) time is within."""
start_local = _local_from_timestamp(time).replace(
day=1, hour=0, minute=0, second=0, microsecond=0
)
# We add 4 days to the end to make sure we are in the next month
end_local = (start_local.replace(day=28) + timedelta(days=4)).replace(
day=1, hour=0, minute=0, second=0, microsecond=0
)
return (
start_local.astimezone(dt_util.UTC).timestamp(),
end_local.astimezone(dt_util.UTC).timestamp(),
)
# We create _month_start_end_ts_cached in the closure in case the timezone changes
_month_start_end_ts_cached = lru_cache(maxsize=6)(_month_start_end_ts)
return _same_month_ts, _month_start_end_ts_cached
def _reduce_statistics_per_month(
stats: dict[str, list[StatisticsRow]],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Reduce hourly statistics to monthly statistics."""
_same_month_ts, _month_start_end_ts = reduce_month_ts_factory()
return _reduce_statistics(
stats, _same_month_ts, _month_start_end_ts, timedelta(days=31), types
)
def _generate_statistics_during_period_stmt(
columns: Select,
start_time: datetime,
end_time: datetime | None,
metadata_ids: list[int] | None,
table: type[StatisticsBase],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> StatementLambdaElement:
"""Prepare a database query for statistics during a given period.
This prepares a lambda_stmt query, so we don't insert the parameters yet.
"""
start_time_ts = start_time.timestamp()
stmt = lambda_stmt(lambda: columns.filter(table.start_ts >= start_time_ts))
if end_time is not None:
end_time_ts = end_time.timestamp()
stmt += lambda q: q.filter(table.start_ts < end_time_ts)
if metadata_ids:
stmt += lambda q: q.filter(
# https://github.com/python/mypy/issues/2608
table.metadata_id.in_(metadata_ids) # type:ignore[arg-type]
)
stmt += lambda q: q.order_by(table.metadata_id, table.start_ts)
return stmt
def _generate_max_mean_min_statistic_in_sub_period_stmt(
columns: Select,
start_time: datetime | None,
end_time: datetime | None,
table: type[StatisticsBase],
metadata_id: int,
) -> StatementLambdaElement:
stmt = lambda_stmt(lambda: columns.filter(table.metadata_id == metadata_id))
if start_time is not None:
start_time_ts = start_time.timestamp()
stmt += lambda q: q.filter(table.start_ts >= start_time_ts)
if end_time is not None:
end_time_ts = end_time.timestamp()
stmt += lambda q: q.filter(table.start_ts < end_time_ts)
return stmt
def _get_max_mean_min_statistic_in_sub_period(
session: Session,
result: dict[str, float],
start_time: datetime | None,
end_time: datetime | None,
table: type[StatisticsBase],
types: set[Literal["max", "mean", "min", "change"]],
metadata_id: int,
) -> None:
"""Return max, mean and min during the period."""
# Calculate max, mean, min
columns = select()
if "max" in types:
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
columns = columns.add_columns(func.max(table.max))
if "mean" in types:
columns = columns.add_columns(func.avg(table.mean))
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
columns = columns.add_columns(func.count(table.mean))
if "min" in types:
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
columns = columns.add_columns(func.min(table.min))
stmt = _generate_max_mean_min_statistic_in_sub_period_stmt(
columns, start_time, end_time, table, metadata_id
)
stats = cast(Sequence[Row[Any]], execute_stmt_lambda_element(session, stmt))
if not stats:
return
if "max" in types and (new_max := stats[0].max) is not None:
old_max = result.get("max")
result["max"] = max(new_max, old_max) if old_max is not None else new_max
if "mean" in types and stats[0].avg is not None:
# https://github.com/sqlalchemy/sqlalchemy/issues/9127
duration = stats[0].count * table.duration.total_seconds() # type: ignore[operator]
result["duration"] = result.get("duration", 0.0) + duration
result["mean_acc"] = result.get("mean_acc", 0.0) + stats[0].avg * duration
if "min" in types and (new_min := stats[0].min) is not None:
old_min = result.get("min")
result["min"] = min(new_min, old_min) if old_min is not None else new_min
def _get_max_mean_min_statistic(
session: Session,
head_start_time: datetime | None,
head_end_time: datetime | None,
main_start_time: datetime | None,
main_end_time: datetime | None,
tail_start_time: datetime | None,
tail_end_time: datetime | None,
tail_only: bool,
metadata_id: int,
types: set[Literal["max", "mean", "min", "change"]],
) -> dict[str, float | None]:
"""Return max, mean and min during the period.
The mean is a time weighted average, combining hourly and 5-minute statistics if
necessary.
"""
max_mean_min: dict[str, float] = {}
result: dict[str, float | None] = {}
if tail_start_time is not None:
# Calculate max, mean, min
_get_max_mean_min_statistic_in_sub_period(
session,
max_mean_min,
tail_start_time,
tail_end_time,
StatisticsShortTerm,
types,
metadata_id,
)
if not tail_only:
_get_max_mean_min_statistic_in_sub_period(
session,
max_mean_min,
main_start_time,
main_end_time,
Statistics,
types,
metadata_id,
)
if head_start_time is not None:
_get_max_mean_min_statistic_in_sub_period(
session,
max_mean_min,
head_start_time,
head_end_time,
StatisticsShortTerm,
types,
metadata_id,
)
if "max" in types:
result["max"] = max_mean_min.get("max")
if "mean" in types:
if "mean_acc" not in max_mean_min:
result["mean"] = None
else:
result["mean"] = max_mean_min["mean_acc"] / max_mean_min["duration"]
if "min" in types:
result["min"] = max_mean_min.get("min")
return result
def _first_statistic(
session: Session,
table: type[StatisticsBase],
metadata_id: int,
) -> datetime | None:
"""Return the data of the oldest statistic row for a given metadata id."""
stmt = lambda_stmt(
lambda: select(table.start_ts)
.filter(table.metadata_id == metadata_id)
.order_by(table.start_ts.asc())
.limit(1)
)
if stats := cast(Sequence[Row], execute_stmt_lambda_element(session, stmt)):
return dt_util.utc_from_timestamp(stats[0].start_ts)
return None
def _get_oldest_sum_statistic(
session: Session,
head_start_time: datetime | None,
main_start_time: datetime | None,
tail_start_time: datetime | None,
oldest_stat: datetime | None,
tail_only: bool,
metadata_id: int,
) -> float | None:
"""Return the oldest non-NULL sum during the period."""
def _get_oldest_sum_statistic_in_sub_period(
session: Session,
start_time: datetime | None,
table: type[StatisticsBase],
metadata_id: int,
) -> float | None:
"""Return the oldest non-NULL sum during the period."""
stmt = lambda_stmt(
lambda: select(table.sum)
.filter(table.metadata_id == metadata_id)
.filter(table.sum.is_not(None))
.order_by(table.start_ts.asc())
.limit(1)
)
if start_time is not None:
start_time = start_time + table.duration - timedelta.resolution
if table == StatisticsShortTerm:
minutes = start_time.minute - start_time.minute % 5
period = start_time.replace(minute=minutes, second=0, microsecond=0)
else:
period = start_time.replace(minute=0, second=0, microsecond=0)
prev_period = period - table.duration
prev_period_ts = prev_period.timestamp()
stmt += lambda q: q.filter(table.start_ts >= prev_period_ts)
stats = cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
return stats[0].sum if stats else None
oldest_sum: float | None = None
# This function won't be called if tail_only is False and main_start_time is None
# the extra checks are added to satisfy MyPy
if not tail_only and main_start_time is not None and oldest_stat is not None:
period = main_start_time.replace(minute=0, second=0, microsecond=0)
prev_period = period - Statistics.duration
if prev_period < oldest_stat:
return 0
if (
head_start_time is not None
and (
oldest_sum := _get_oldest_sum_statistic_in_sub_period(
session, head_start_time, StatisticsShortTerm, metadata_id
)
)
is not None
):
return oldest_sum
if not tail_only:
if (
oldest_sum := _get_oldest_sum_statistic_in_sub_period(
session, main_start_time, Statistics, metadata_id
)
) is not None:
return oldest_sum
return 0
if (
tail_start_time is not None
and (
oldest_sum := _get_oldest_sum_statistic_in_sub_period(
session, tail_start_time, StatisticsShortTerm, metadata_id
)
)
) is not None:
return oldest_sum
return 0
def _get_newest_sum_statistic(
session: Session,
head_start_time: datetime | None,
head_end_time: datetime | None,
main_start_time: datetime | None,
main_end_time: datetime | None,
tail_start_time: datetime | None,
tail_end_time: datetime | None,
tail_only: bool,
metadata_id: int,
) -> float | None:
"""Return the newest non-NULL sum during the period."""
def _get_newest_sum_statistic_in_sub_period(
session: Session,
start_time: datetime | None,
end_time: datetime | None,
table: type[StatisticsBase],
metadata_id: int,
) -> float | None:
"""Return the newest non-NULL sum during the period."""
stmt = lambda_stmt(
lambda: select(
table.sum,
)
.filter(table.metadata_id == metadata_id)
.filter(table.sum.is_not(None))
.order_by(table.start_ts.desc())
.limit(1)
)
if start_time is not None:
start_time_ts = start_time.timestamp()
stmt += lambda q: q.filter(table.start_ts >= start_time_ts)
if end_time is not None:
end_time_ts = end_time.timestamp()
stmt += lambda q: q.filter(table.start_ts < end_time_ts)
stats = cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
return stats[0].sum if stats else None
newest_sum: float | None = None
if tail_start_time is not None:
newest_sum = _get_newest_sum_statistic_in_sub_period(
session, tail_start_time, tail_end_time, StatisticsShortTerm, metadata_id
)
if newest_sum is not None:
return newest_sum
if not tail_only:
newest_sum = _get_newest_sum_statistic_in_sub_period(
session, main_start_time, main_end_time, Statistics, metadata_id
)
if newest_sum is not None:
return newest_sum
if head_start_time is not None:
newest_sum = _get_newest_sum_statistic_in_sub_period(
session, head_start_time, head_end_time, StatisticsShortTerm, metadata_id
)
return newest_sum
def statistic_during_period(
hass: HomeAssistant,
start_time: datetime | None,
end_time: datetime | None,
statistic_id: str,
types: set[Literal["max", "mean", "min", "change"]] | None,
units: dict[str, str] | None,
) -> dict[str, Any]:
"""Return a statistic data point for the UTC period start_time - end_time."""
metadata = None
if not types:
types = {"max", "mean", "min", "change"}
result: dict[str, Any] = {}
with session_scope(hass=hass, read_only=True) as session:
# Fetch metadata for the given statistic_id
if not (
metadata := get_instance(hass).statistics_meta_manager.get(
session, statistic_id
)
):
return result
metadata_id = metadata[0]
oldest_stat = _first_statistic(session, Statistics, metadata_id)
oldest_5_min_stat = None
if not valid_statistic_id(statistic_id):
oldest_5_min_stat = _first_statistic(
session, StatisticsShortTerm, metadata_id
)
# To calculate the summary, data from the statistics (hourly) and
# short_term_statistics (5 minute) tables is combined
# - The short term statistics table is used for the head and tail of the period,
# if the period it doesn't start or end on a full hour
# - The statistics table is used for the remainder of the time
now = dt_util.utcnow()
if end_time is not None and end_time > now:
end_time = now
tail_only = (
start_time is not None
and end_time is not None
and end_time - start_time < timedelta(hours=1)
)
# Calculate the head period
head_start_time: datetime | None = None
head_end_time: datetime | None = None
if (
not tail_only
and oldest_stat is not None
and oldest_5_min_stat is not None
and oldest_5_min_stat - oldest_stat < timedelta(hours=1)
and (start_time is None or start_time < oldest_5_min_stat)
):
# To improve accuracy of averaged for statistics which were added within
# recorder's retention period.
head_start_time = oldest_5_min_stat
head_end_time = oldest_5_min_stat.replace(
minute=0, second=0, microsecond=0
) + timedelta(hours=1)
elif not tail_only and start_time is not None and start_time.minute:
head_start_time = start_time
head_end_time = start_time.replace(
minute=0, second=0, microsecond=0
) + timedelta(hours=1)
# Calculate the tail period
tail_start_time: datetime | None = None
tail_end_time: datetime | None = None
if end_time is None:
tail_start_time = now.replace(minute=0, second=0, microsecond=0)
elif end_time.minute:
tail_start_time = (
start_time
if tail_only
else end_time.replace(minute=0, second=0, microsecond=0)
)
tail_end_time = end_time
# Calculate the main period
main_start_time: datetime | None = None
main_end_time: datetime | None = None
if not tail_only:
main_start_time = start_time if head_end_time is None else head_end_time
main_end_time = end_time if tail_start_time is None else tail_start_time
if not types.isdisjoint({"max", "mean", "min"}):
result = _get_max_mean_min_statistic(
session,
head_start_time,
head_end_time,
main_start_time,
main_end_time,
tail_start_time,
tail_end_time,
tail_only,
metadata_id,
types,
)
if "change" in types:
oldest_sum: float | None
if start_time is None:
oldest_sum = 0.0
else:
oldest_sum = _get_oldest_sum_statistic(
session,
head_start_time,
main_start_time,
tail_start_time,
oldest_stat,
tail_only,
metadata_id,
)
newest_sum = _get_newest_sum_statistic(
session,
head_start_time,
head_end_time,
main_start_time,
main_end_time,
tail_start_time,
tail_end_time,
tail_only,
metadata_id,
)
# Calculate the difference between the oldest and newest sum
if oldest_sum is not None and newest_sum is not None:
result["change"] = newest_sum - oldest_sum
else:
result["change"] = None
state_unit = unit = metadata[1]["unit_of_measurement"]
if state := hass.states.get(statistic_id):
state_unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
convert = _get_statistic_to_display_unit_converter(unit, state_unit, units)
return {key: convert(value) if convert else value for key, value in result.items()}
def _statistics_during_period_with_session(
hass: HomeAssistant,
session: Session,
start_time: datetime,
end_time: datetime | None,
statistic_ids: set[str] | None,
period: Literal["5minute", "day", "hour", "week", "month"],
units: dict[str, str] | None,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Return statistic data points during UTC period start_time - end_time.
If end_time is omitted, returns statistics newer than or equal to start_time.
If statistic_ids is omitted, returns statistics for all statistics ids.
"""
if statistic_ids is not None and not isinstance(statistic_ids, set):
# This is for backwards compatibility to avoid a breaking change
# for custom integrations that call this method.
statistic_ids = set(statistic_ids) # type: ignore[unreachable]
metadata = None
# Fetch metadata for the given (or all) statistic_ids
metadata = get_instance(hass).statistics_meta_manager.get_many(
session, statistic_ids=statistic_ids
)
if not metadata:
return {}
metadata_ids = None
if statistic_ids is not None:
metadata_ids = [metadata_id for metadata_id, _ in metadata.values()]
table: type[Statistics | StatisticsShortTerm] = (
Statistics if period != "5minute" else StatisticsShortTerm
)
columns = select(table.metadata_id, table.start_ts) # type: ignore[call-overload]
if "last_reset" in types:
columns = columns.add_columns(table.last_reset_ts)
if "max" in types:
columns = columns.add_columns(table.max)
if "mean" in types:
columns = columns.add_columns(table.mean)
if "min" in types:
columns = columns.add_columns(table.min)
if "state" in types:
columns = columns.add_columns(table.state)
if "sum" in types:
columns = columns.add_columns(table.sum)
stmt = _generate_statistics_during_period_stmt(
columns, start_time, end_time, metadata_ids, table, types
)
stats = cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
if not stats:
return {}
# Return statistics combined with metadata
if period not in ("day", "week", "month"):
return _sorted_statistics_to_dict(
hass,
session,
stats,
statistic_ids,
metadata,
True,
table,
start_time,
units,
types,
)
result = _sorted_statistics_to_dict(
hass,
session,
stats,
statistic_ids,
metadata,
True,
table,
start_time,
units,
types,
)
if period == "day":
return _reduce_statistics_per_day(result, types)
if period == "week":
return _reduce_statistics_per_week(result, types)
return _reduce_statistics_per_month(result, types)
def statistics_during_period(
hass: HomeAssistant,
start_time: datetime,
end_time: datetime | None,
statistic_ids: set[str] | None,
period: Literal["5minute", "day", "hour", "week", "month"],
units: dict[str, str] | None,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Return statistic data points during UTC period start_time - end_time.
If end_time is omitted, returns statistics newer than or equal to start_time.
If statistic_ids is omitted, returns statistics for all statistics ids.
"""
with session_scope(hass=hass, read_only=True) as session:
return _statistics_during_period_with_session(
hass,
session,
start_time,
end_time,
statistic_ids,
period,
units,
types,
)
def _get_last_statistics_stmt(
metadata_id: int,
number_of_stats: int,
) -> StatementLambdaElement:
"""Generate a statement for number_of_stats statistics for a given statistic_id."""
return lambda_stmt(
lambda: select(*QUERY_STATISTICS)
.filter_by(metadata_id=metadata_id)
.order_by(Statistics.metadata_id, Statistics.start_ts.desc())
.limit(number_of_stats)
)
def _get_last_statistics_short_term_stmt(
metadata_id: int,
number_of_stats: int,
) -> StatementLambdaElement:
"""Generate a statement for number_of_stats short term statistics.
For a given statistic_id.
"""
return lambda_stmt(
lambda: select(*QUERY_STATISTICS_SHORT_TERM)
.filter_by(metadata_id=metadata_id)
.order_by(StatisticsShortTerm.metadata_id, StatisticsShortTerm.start_ts.desc())
.limit(number_of_stats)
)
def _get_last_statistics(
hass: HomeAssistant,
number_of_stats: int,
statistic_id: str,
convert_units: bool,
table: type[StatisticsBase],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Return the last number_of_stats statistics for a given statistic_id."""
statistic_ids = {statistic_id}
with session_scope(hass=hass, read_only=True) as session:
# Fetch metadata for the given statistic_id
metadata = get_instance(hass).statistics_meta_manager.get_many(
session, statistic_ids=statistic_ids
)
if not metadata:
return {}
metadata_id = metadata[statistic_id][0]
if table == Statistics:
stmt = _get_last_statistics_stmt(metadata_id, number_of_stats)
else:
stmt = _get_last_statistics_short_term_stmt(metadata_id, number_of_stats)
stats = cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
if not stats:
return {}
# Return statistics combined with metadata
return _sorted_statistics_to_dict(
hass,
session,
stats,
statistic_ids,
metadata,
convert_units,
table,
None,
None,
types,
)
def get_last_statistics(
hass: HomeAssistant,
number_of_stats: int,
statistic_id: str,
convert_units: bool,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Return the last number_of_stats statistics for a statistic_id."""
return _get_last_statistics(
hass, number_of_stats, statistic_id, convert_units, Statistics, types
)
def get_last_short_term_statistics(
hass: HomeAssistant,
number_of_stats: int,
statistic_id: str,
convert_units: bool,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Return the last number_of_stats short term statistics for a statistic_id."""
return _get_last_statistics(
hass, number_of_stats, statistic_id, convert_units, StatisticsShortTerm, types
)
def _latest_short_term_statistics_stmt(
metadata_ids: list[int],
) -> StatementLambdaElement:
"""Create the statement for finding the latest short term stat rows."""
return lambda_stmt(
lambda: select(*QUERY_STATISTICS_SHORT_TERM).join(
(
most_recent_statistic_row := (
select(
StatisticsShortTerm.metadata_id,
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
func.max(StatisticsShortTerm.start_ts).label("start_max"),
)
.where(StatisticsShortTerm.metadata_id.in_(metadata_ids))
.group_by(StatisticsShortTerm.metadata_id)
).subquery()
),
(StatisticsShortTerm.metadata_id == most_recent_statistic_row.c.metadata_id)
& (StatisticsShortTerm.start_ts == most_recent_statistic_row.c.start_max),
)
)
def get_latest_short_term_statistics(
hass: HomeAssistant,
statistic_ids: set[str],
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
metadata: dict[str, tuple[int, StatisticMetaData]] | None = None,
) -> dict[str, list[StatisticsRow]]:
"""Return the latest short term statistics for a list of statistic_ids."""
with session_scope(hass=hass, read_only=True) as session:
# Fetch metadata for the given statistic_ids
if not metadata:
metadata = get_instance(hass).statistics_meta_manager.get_many(
session, statistic_ids=statistic_ids
)
if not metadata:
return {}
metadata_ids = [
metadata[statistic_id][0]
for statistic_id in statistic_ids
if statistic_id in metadata
]
stmt = _latest_short_term_statistics_stmt(metadata_ids)
stats = cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
if not stats:
return {}
# Return statistics combined with metadata
return _sorted_statistics_to_dict(
hass,
session,
stats,
statistic_ids,
metadata,
False,
StatisticsShortTerm,
None,
None,
types,
)
def _generate_statistics_at_time_stmt(
columns: Select,
table: type[StatisticsBase],
metadata_ids: set[int],
start_time_ts: float,
) -> StatementLambdaElement:
"""Create the statement for finding the statistics for a given time."""
return lambda_stmt(
lambda: columns.join(
(
most_recent_statistic_ids := (
select(
# https://github.com/sqlalchemy/sqlalchemy/issues/9189
# pylint: disable-next=not-callable
func.max(table.start_ts).label("max_start_ts"),
table.metadata_id.label("max_metadata_id"),
)
.filter(table.start_ts < start_time_ts)
.filter(table.metadata_id.in_(metadata_ids))
.group_by(table.metadata_id)
.subquery()
)
),
and_(
table.start_ts == most_recent_statistic_ids.c.max_start_ts,
table.metadata_id == most_recent_statistic_ids.c.max_metadata_id,
),
)
)
def _statistics_at_time(
session: Session,
metadata_ids: set[int],
table: type[StatisticsBase],
start_time: datetime,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> Sequence[Row] | None:
"""Return last known statistics, earlier than start_time, for the metadata_ids."""
columns = select(table.metadata_id, table.start_ts)
if "last_reset" in types:
columns = columns.add_columns(table.last_reset_ts)
if "max" in types:
columns = columns.add_columns(table.max)
if "mean" in types:
columns = columns.add_columns(table.mean)
if "min" in types:
columns = columns.add_columns(table.min)
if "state" in types:
columns = columns.add_columns(table.state)
if "sum" in types:
columns = columns.add_columns(table.sum)
start_time_ts = start_time.timestamp()
stmt = _generate_statistics_at_time_stmt(
columns, table, metadata_ids, start_time_ts
)
return cast(Sequence[Row], execute_stmt_lambda_element(session, stmt))
def _sorted_statistics_to_dict(
hass: HomeAssistant,
session: Session,
stats: Sequence[Row[Any]],
statistic_ids: set[str] | None,
_metadata: dict[str, tuple[int, StatisticMetaData]],
convert_units: bool,
table: type[StatisticsBase],
start_time: datetime | None,
units: dict[str, str] | None,
types: set[Literal["last_reset", "max", "mean", "min", "state", "sum"]],
) -> dict[str, list[StatisticsRow]]:
"""Convert SQL results into JSON friendly data structure."""
assert stats, "stats must not be empty" # Guard against implementation error
result: dict[str, list[StatisticsRow]] = defaultdict(list)
metadata = dict(_metadata.values())
need_stat_at_start_time: set[int] = set()
start_time_ts = start_time.timestamp() if start_time else None
# Identify metadata IDs for which no data was available at the requested start time
field_map: dict[str, int] = {key: idx for idx, key in enumerate(stats[0]._fields)}
metadata_id_idx = field_map["metadata_id"]
start_ts_idx = field_map["start_ts"]
stats_by_meta_id: dict[int, list[Row]] = {}
seen_statistic_ids: set[str] = set()
key_func = itemgetter(metadata_id_idx)
for meta_id, group in groupby(stats, key_func):
stats_list = stats_by_meta_id[meta_id] = list(group)
seen_statistic_ids.add(metadata[meta_id]["statistic_id"])
first_start_time_ts = stats_list[0][start_ts_idx]
if start_time_ts and first_start_time_ts > start_time_ts:
need_stat_at_start_time.add(meta_id)
# Set all statistic IDs to empty lists in result set to maintain the order
if statistic_ids is not None:
for stat_id in statistic_ids:
# Only set the statistic ID if it is in the data to
# avoid having to do a second loop to remove the
# statistic IDs that are not in the data at the end
if stat_id in seen_statistic_ids:
result[stat_id] = []
# Fetch last known statistics for the needed metadata IDs
if need_stat_at_start_time:
assert start_time # Can not be None if need_stat_at_start_time is not empty
if tmp := _statistics_at_time(
session, need_stat_at_start_time, table, start_time, types
):
for stat in tmp:
stats_by_meta_id[stat[metadata_id_idx]].insert(0, stat)
# Figure out which fields we need to extract from the SQL result
# and which indices they have in the result so we can avoid the overhead
# of doing a dict lookup for each row
mean_idx = field_map["mean"] if "mean" in types else None
min_idx = field_map["min"] if "min" in types else None
max_idx = field_map["max"] if "max" in types else None
last_reset_ts_idx = field_map["last_reset_ts"] if "last_reset" in types else None
state_idx = field_map["state"] if "state" in types else None
sum_idx = field_map["sum"] if "sum" in types else None
# Append all statistic entries, and optionally do unit conversion
table_duration_seconds = table.duration.total_seconds()
for meta_id, stats_list in stats_by_meta_id.items():
metadata_by_id = metadata[meta_id]
statistic_id = metadata_by_id["statistic_id"]
if convert_units:
state_unit = unit = metadata_by_id["unit_of_measurement"]
if state := hass.states.get(statistic_id):
state_unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
convert = _get_statistic_to_display_unit_converter(unit, state_unit, units)
else:
convert = None
ent_results_append = result[statistic_id].append
#
# The below loop is a red hot path for energy, and every
# optimization counts in here.
#
# Specifically, we want to avoid function calls,
# attribute lookups, and dict lookups as much as possible.
#
for db_state in stats_list:
row: StatisticsRow = {
"start": (start_ts := db_state[start_ts_idx]),
"end": start_ts + table_duration_seconds,
}
if last_reset_ts_idx is not None:
row["last_reset"] = db_state[last_reset_ts_idx]
if convert:
if mean_idx is not None:
row["mean"] = convert(db_state[mean_idx])
if min_idx is not None:
row["min"] = convert(db_state[min_idx])
if max_idx is not None:
row["max"] = convert(db_state[max_idx])
if state_idx is not None:
row["state"] = convert(db_state[state_idx])
if sum_idx is not None:
row["sum"] = convert(db_state[sum_idx])
else:
if mean_idx is not None:
row["mean"] = db_state[mean_idx]
if min_idx is not None:
row["min"] = db_state[min_idx]
if max_idx is not None:
row["max"] = db_state[max_idx]
if state_idx is not None:
row["state"] = db_state[state_idx]
if sum_idx is not None:
row["sum"] = db_state[sum_idx]
ent_results_append(row)
return result
def validate_statistics(hass: HomeAssistant) -> dict[str, list[ValidationIssue]]:
"""Validate statistics."""
platform_validation: dict[str, list[ValidationIssue]] = {}
for platform in hass.data[DOMAIN].recorder_platforms.values():
if not hasattr(platform, "validate_statistics"):
continue
platform_validation.update(platform.validate_statistics(hass))
return platform_validation
def _statistics_exists(
session: Session,
table: type[StatisticsBase],
metadata_id: int,
start: datetime,
) -> int | None:
"""Return id if a statistics entry already exists."""
start_ts = start.timestamp()
result = (
session.query(table.id)
.filter((table.metadata_id == metadata_id) & (table.start_ts == start_ts))
.first()
)
return result.id if result else None
@callback
def _async_import_statistics(
hass: HomeAssistant,
metadata: StatisticMetaData,
statistics: Iterable[StatisticData],
) -> None:
"""Validate timestamps and insert an import_statistics job in the queue."""
for statistic in statistics:
start = statistic["start"]
if start.tzinfo is None or start.tzinfo.utcoffset(start) is None:
raise HomeAssistantError("Naive timestamp")
if start.minute != 0 or start.second != 0 or start.microsecond != 0:
raise HomeAssistantError("Invalid timestamp")
statistic["start"] = dt_util.as_utc(start)
if "last_reset" in statistic and statistic["last_reset"] is not None:
last_reset = statistic["last_reset"]
if (
last_reset.tzinfo is None
or last_reset.tzinfo.utcoffset(last_reset) is None
):
raise HomeAssistantError("Naive timestamp")
statistic["last_reset"] = dt_util.as_utc(last_reset)
# Insert job in recorder's queue
get_instance(hass).async_import_statistics(metadata, statistics, Statistics)
@callback
def async_import_statistics(
hass: HomeAssistant,
metadata: StatisticMetaData,
statistics: Iterable[StatisticData],
) -> None:
"""Import hourly statistics from an internal source.
This inserts an import_statistics job in the recorder's queue.
"""
if not valid_entity_id(metadata["statistic_id"]):
raise HomeAssistantError("Invalid statistic_id")
# The source must not be empty and must be aligned with the statistic_id
if not metadata["source"] or metadata["source"] != DOMAIN:
raise HomeAssistantError("Invalid source")
_async_import_statistics(hass, metadata, statistics)
@callback
def async_add_external_statistics(
hass: HomeAssistant,
metadata: StatisticMetaData,
statistics: Iterable[StatisticData],
) -> None:
"""Add hourly statistics from an external source.
This inserts an import_statistics job in the recorder's queue.
"""
# The statistic_id has same limitations as an entity_id, but with a ':' as separator
if not valid_statistic_id(metadata["statistic_id"]):
raise HomeAssistantError("Invalid statistic_id")
# The source must not be empty and must be aligned with the statistic_id
domain, _object_id = split_statistic_id(metadata["statistic_id"])
if not metadata["source"] or metadata["source"] != domain:
raise HomeAssistantError("Invalid source")
_async_import_statistics(hass, metadata, statistics)
def _filter_unique_constraint_integrity_error(
instance: Recorder,
) -> Callable[[Exception], bool]:
def _filter_unique_constraint_integrity_error(err: Exception) -> bool:
"""Handle unique constraint integrity errors."""
if not isinstance(err, StatementError):
return False
assert instance.engine is not None
dialect_name = instance.engine.dialect.name
ignore = False
if (
dialect_name == SupportedDialect.SQLITE
and "UNIQUE constraint failed" in str(err)
):
ignore = True
if (
dialect_name == SupportedDialect.POSTGRESQL
and err.orig
and hasattr(err.orig, "pgcode")
and err.orig.pgcode == "23505"
):
ignore = True
if (
dialect_name == SupportedDialect.MYSQL
and err.orig
and hasattr(err.orig, "args")
):
with contextlib.suppress(TypeError):
if err.orig.args[0] == 1062:
ignore = True
if ignore:
_LOGGER.warning(
(
"Blocked attempt to insert duplicated statistic rows, please report"
" at %s"
),
"https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue+label%3A%22integration%3A+recorder%22",
exc_info=err,
)
return ignore
return _filter_unique_constraint_integrity_error
def _import_statistics_with_session(
instance: Recorder,
session: Session,
metadata: StatisticMetaData,
statistics: Iterable[StatisticData],
table: type[StatisticsBase],
) -> bool:
"""Import statistics to the database."""
statistics_meta_manager = instance.statistics_meta_manager
old_metadata_dict = statistics_meta_manager.get_many(
session, statistic_ids={metadata["statistic_id"]}
)
_, metadata_id = statistics_meta_manager.update_or_add(
session, metadata, old_metadata_dict
)
for stat in statistics:
if stat_id := _statistics_exists(session, table, metadata_id, stat["start"]):
_update_statistics(session, table, stat_id, stat)
else:
_insert_statistics(session, table, metadata_id, stat)
return True
@retryable_database_job("statistics")
def import_statistics(
instance: Recorder,
metadata: StatisticMetaData,
statistics: Iterable[StatisticData],
table: type[StatisticsBase],
) -> bool:
"""Process an import_statistics job."""
with session_scope(
session=instance.get_session(),
exception_filter=_filter_unique_constraint_integrity_error(instance),
) as session:
return _import_statistics_with_session(
instance, session, metadata, statistics, table
)
@retryable_database_job("adjust_statistics")
def adjust_statistics(
instance: Recorder,
statistic_id: str,
start_time: datetime,
sum_adjustment: float,
adjustment_unit: str,
) -> bool:
"""Process an add_statistics job."""
with session_scope(session=instance.get_session()) as session:
metadata = instance.statistics_meta_manager.get_many(
session, statistic_ids={statistic_id}
)
if statistic_id not in metadata:
return True
statistic_unit = metadata[statistic_id][1]["unit_of_measurement"]
convert = _get_display_to_statistic_unit_converter(
adjustment_unit, statistic_unit
)
sum_adjustment = convert(sum_adjustment)
_adjust_sum_statistics(
session,
StatisticsShortTerm,
metadata[statistic_id][0],
start_time,
sum_adjustment,
)
_adjust_sum_statistics(
session,
Statistics,
metadata[statistic_id][0],
start_time.replace(minute=0),
sum_adjustment,
)
return True
def _change_statistics_unit_for_table(
session: Session,
table: type[StatisticsBase],
metadata_id: int,
convert: Callable[[float | None], float | None],
) -> None:
"""Insert statistics in the database."""
columns = (table.id, table.mean, table.min, table.max, table.state, table.sum)
query = session.query(*columns).filter_by(metadata_id=bindparam("metadata_id"))
rows = execute(query.params(metadata_id=metadata_id))
for row in rows:
session.query(table).filter(table.id == row.id).update(
{
table.mean: convert(row.mean),
table.min: convert(row.min),
table.max: convert(row.max),
table.state: convert(row.state),
table.sum: convert(row.sum),
},
synchronize_session=False,
)
def change_statistics_unit(
instance: Recorder,
statistic_id: str,
new_unit: str,
old_unit: str,
) -> None:
"""Change statistics unit for a statistic_id."""
statistics_meta_manager = instance.statistics_meta_manager
with session_scope(session=instance.get_session()) as session:
metadata = statistics_meta_manager.get(session, statistic_id)
# Guard against the statistics being removed or updated before the
# change_statistics_unit job executes
if (
metadata is None
or metadata[1]["source"] != DOMAIN
or metadata[1]["unit_of_measurement"] != old_unit
):
_LOGGER.warning("Could not change statistics unit for %s", statistic_id)
return
metadata_id = metadata[0]
convert = _get_unit_converter(old_unit, new_unit)
tables: tuple[type[StatisticsBase], ...] = (
Statistics,
StatisticsShortTerm,
)
for table in tables:
_change_statistics_unit_for_table(session, table, metadata_id, convert)
statistics_meta_manager.update_unit_of_measurement(
session, statistic_id, new_unit
)
@callback
def async_change_statistics_unit(
hass: HomeAssistant,
statistic_id: str,
*,
new_unit_of_measurement: str,
old_unit_of_measurement: str,
) -> None:
"""Change statistics unit for a statistic_id."""
if not can_convert_units(old_unit_of_measurement, new_unit_of_measurement):
raise HomeAssistantError(
f"Can't convert {old_unit_of_measurement} to {new_unit_of_measurement}"
)
get_instance(hass).async_change_statistics_unit(
statistic_id,
new_unit_of_measurement=new_unit_of_measurement,
old_unit_of_measurement=old_unit_of_measurement,
)
def _validate_db_schema_utf8(
instance: Recorder, session_maker: Callable[[], Session]
) -> set[str]:
"""Do some basic checks for common schema errors caused by manual migration."""
schema_errors: set[str] = set()
# Lack of full utf8 support is only an issue for MySQL / MariaDB
if instance.dialect_name != SupportedDialect.MYSQL:
return schema_errors
# This name can't be represented unless 4-byte UTF-8 unicode is supported
utf8_name = "𓆚𓃗"
statistic_id = f"{DOMAIN}.db_test"
metadata: StatisticMetaData = {
"has_mean": True,
"has_sum": True,
"name": utf8_name,
"source": DOMAIN,
"statistic_id": statistic_id,
"unit_of_measurement": None,
}
statistics_meta_manager = instance.statistics_meta_manager
# Try inserting some metadata which needs utfmb4 support
try:
with session_scope(session=session_maker()) as session:
old_metadata_dict = statistics_meta_manager.get_many(
session, statistic_ids={statistic_id}
)
try:
statistics_meta_manager.update_or_add(
session, metadata, old_metadata_dict
)
statistics_meta_manager.delete(session, statistic_ids=[statistic_id])
except OperationalError as err:
if err.orig and err.orig.args[0] == 1366:
_LOGGER.debug(
"Database table statistics_meta does not support 4-byte UTF-8"
)
schema_errors.add("statistics_meta.4-byte UTF-8")
session.rollback()
else:
raise
except Exception as exc: # pylint: disable=broad-except
_LOGGER.exception("Error when validating DB schema: %s", exc)
return schema_errors
def _get_future_year() -> int:
"""Get a year in the future."""
return datetime.now().year + 1
def _validate_db_schema(
hass: HomeAssistant, instance: Recorder, session_maker: Callable[[], Session]
) -> set[str]:
"""Do some basic checks for common schema errors caused by manual migration."""
schema_errors: set[str] = set()
statistics_meta_manager = instance.statistics_meta_manager
# Wrong precision is only an issue for MySQL / MariaDB / PostgreSQL
if instance.dialect_name not in (
SupportedDialect.MYSQL,
SupportedDialect.POSTGRESQL,
):
return schema_errors
# This number can't be accurately represented as a 32-bit float
precise_number = 1.000000000000001
# This time can't be accurately represented unless datetimes have µs precision
#
# We want to insert statistics for a time in the future, in case they
# have conflicting metadata_id's with existing statistics that were
# never cleaned up. By inserting in the future, we can be sure that
# that by selecting the last inserted row, we will get the one we
# just inserted.
#
future_year = _get_future_year()
precise_time = datetime(future_year, 10, 6, microsecond=1, tzinfo=dt_util.UTC)
start_time = datetime(future_year, 10, 6, tzinfo=dt_util.UTC)
statistic_id = f"{DOMAIN}.db_test"
metadata: StatisticMetaData = {
"has_mean": True,
"has_sum": True,
"name": None,
"source": DOMAIN,
"statistic_id": statistic_id,
"unit_of_measurement": None,
}
statistics: StatisticData = {
"last_reset": precise_time,
"max": precise_number,
"mean": precise_number,
"min": precise_number,
"start": precise_time,
"state": precise_number,
"sum": precise_number,
}
def check_columns(
schema_errors: set[str],
stored: Mapping,
expected: Mapping,
columns: tuple[str, ...],
table_name: str,
supports: str,
) -> None:
for column in columns:
if stored[column] != expected[column]:
schema_errors.add(f"{table_name}.{supports}")
_LOGGER.error(
"Column %s in database table %s does not support %s (stored=%s != expected=%s)",
column,
table_name,
supports,
stored[column],
expected[column],
)
# Insert / adjust a test statistics row in each of the tables
tables: tuple[type[Statistics | StatisticsShortTerm], ...] = (
Statistics,
StatisticsShortTerm,
)
try:
with session_scope(session=session_maker()) as session:
for table in tables:
_import_statistics_with_session(
instance, session, metadata, (statistics,), table
)
stored_statistics = _statistics_during_period_with_session(
hass,
session,
start_time,
None,
{statistic_id},
"hour" if table == Statistics else "5minute",
None,
{"last_reset", "max", "mean", "min", "state", "sum"},
)
if not (stored_statistic := stored_statistics.get(statistic_id)):
_LOGGER.warning(
"Schema validation failed for table: %s", table.__tablename__
)
continue
# We want to look at the last inserted row to make sure there
# is not previous garbage data in the table that would cause
# the test to produce an incorrect result. To achieve this,
# we inserted a row in the future, and now we select the last
# inserted row back.
last_stored_statistic = stored_statistic[-1]
check_columns(
schema_errors,
last_stored_statistic,
statistics,
("max", "mean", "min", "state", "sum"),
table.__tablename__,
"double precision",
)
assert statistics["last_reset"]
check_columns(
schema_errors,
last_stored_statistic,
{
"last_reset": datetime_to_timestamp_or_none(
statistics["last_reset"]
),
"start": datetime_to_timestamp_or_none(statistics["start"]),
},
("start", "last_reset"),
table.__tablename__,
"µs precision",
)
statistics_meta_manager.delete(session, statistic_ids=[statistic_id])
except Exception as exc: # pylint: disable=broad-except
_LOGGER.exception("Error when validating DB schema: %s", exc)
return schema_errors
def validate_db_schema(
hass: HomeAssistant, instance: Recorder, session_maker: Callable[[], Session]
) -> set[str]:
"""Do some basic checks for common schema errors caused by manual migration."""
schema_errors: set[str] = set()
schema_errors |= _validate_db_schema_utf8(instance, session_maker)
schema_errors |= _validate_db_schema(hass, instance, session_maker)
if schema_errors:
_LOGGER.debug(
"Detected statistics schema errors: %s", ", ".join(sorted(schema_errors))
)
return schema_errors
def correct_db_schema(
instance: Recorder,
engine: Engine,
session_maker: Callable[[], Session],
schema_errors: set[str],
) -> None:
"""Correct issues detected by validate_db_schema."""
from .migration import _modify_columns # pylint: disable=import-outside-toplevel
if "statistics_meta.4-byte UTF-8" in schema_errors:
# Attempt to convert the table to utf8mb4
_LOGGER.warning(
(
"Updating character set and collation of table %s to utf8mb4. "
"Note: this can take several minutes on large databases and slow "
"computers. Please be patient!"
),
"statistics_meta",
)
with contextlib.suppress(SQLAlchemyError), session_scope(
session=session_maker()
) as session:
connection = session.connection()
connection.execute(
# Using LOCK=EXCLUSIVE to prevent the database from corrupting
# https://github.com/home-assistant/core/issues/56104
text(
"ALTER TABLE statistics_meta CONVERT TO CHARACTER SET utf8mb4"
" COLLATE utf8mb4_unicode_ci, LOCK=EXCLUSIVE"
)
)
tables: tuple[type[Statistics | StatisticsShortTerm], ...] = (
Statistics,
StatisticsShortTerm,
)
for table in tables:
if f"{table.__tablename__}.double precision" in schema_errors:
# Attempt to convert float columns to double precision
_modify_columns(
session_maker,
engine,
table.__tablename__,
[
"mean DOUBLE PRECISION",
"min DOUBLE PRECISION",
"max DOUBLE PRECISION",
"state DOUBLE PRECISION",
"sum DOUBLE PRECISION",
],
)
if f"{table.__tablename__}.µs precision" in schema_errors:
# Attempt to convert timestamp columns to µs precision
_modify_columns(
session_maker,
engine,
table.__tablename__,
[
"last_reset_ts DOUBLE PRECISION",
"start_ts DOUBLE PRECISION",
],
)
def cleanup_statistics_timestamp_migration(instance: Recorder) -> bool:
"""Clean up the statistics migration from timestamp to datetime.
Returns False if there are more rows to update.
Returns True if all rows have been updated.
"""
engine = instance.engine
assert engine is not None
if engine.dialect.name == SupportedDialect.SQLITE:
for table in STATISTICS_TABLES:
with session_scope(session=instance.get_session()) as session:
session.connection().execute(
text(
f"update {table} set start = NULL, created = NULL, last_reset = NULL;"
)
)
elif engine.dialect.name == SupportedDialect.MYSQL:
for table in STATISTICS_TABLES:
with session_scope(session=instance.get_session()) as session:
if (
session.connection()
.execute(
text(
f"UPDATE {table} set start=NULL, created=NULL, last_reset=NULL where start is not NULL LIMIT 250000;"
)
)
.rowcount
):
# We have more rows to update so return False
# to indicate we need to run again
return False
elif engine.dialect.name == SupportedDialect.POSTGRESQL:
for table in STATISTICS_TABLES:
with session_scope(session=instance.get_session()) as session:
if (
session.connection()
.execute(
text(
f"UPDATE {table} set start=NULL, created=NULL, last_reset=NULL " # nosec
f"where id in (select id from {table} where start is not NULL LIMIT 250000)"
)
)
.rowcount
):
# We have more rows to update so return False
# to indicate we need to run again
return False
from .migration import _drop_index # pylint: disable=import-outside-toplevel
for table in STATISTICS_TABLES:
_drop_index(instance.get_session, table, f"ix_{table}_start")
# We have no more rows to update so return True
# to indicate we are done
return True