"""Support for OpenCV classification on images."""
from datetime import timedelta
import logging

import requests
import voluptuous as vol

from homeassistant.components.image_processing import (
    CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA,
    ImageProcessingEntity)
from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv

_LOGGER = logging.getLogger(__name__)

ATTR_MATCHES = 'matches'
ATTR_TOTAL_MATCHES = 'total_matches'

CASCADE_URL = \
    'https://raw.githubusercontent.com/opencv/opencv/master/data/' + \
    'lbpcascades/lbpcascade_frontalface.xml'

CONF_CLASSIFIER = 'classifier'
CONF_FILE = 'file'
CONF_MIN_SIZE = 'min_size'
CONF_NEIGHBORS = 'neighbors'
CONF_SCALE = 'scale'

DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DEFAULT_TIMEOUT = 10

SCAN_INTERVAL = timedelta(seconds=2)

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
    vol.Optional(CONF_CLASSIFIER): {
        cv.string: vol.Any(
            cv.isfile,
            vol.Schema({
                vol.Required(CONF_FILE): cv.isfile,
                vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
                vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
                    cv.positive_int,
                vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
                    vol.Schema((int, int))
            })
        )
    }
})


def _create_processor_from_config(hass, camera_entity, config):
    """Create an OpenCV processor from configuration."""
    classifier_config = config.get(CONF_CLASSIFIER)
    name = '{} {}'.format(
        config[CONF_NAME], split_entity_id(camera_entity)[1].replace('_', ' '))

    processor = OpenCVImageProcessor(
        hass, camera_entity, name, classifier_config)

    return processor


def _get_default_classifier(dest_path):
    """Download the default OpenCV classifier."""
    _LOGGER.info("Downloading default classifier")
    req = requests.get(CASCADE_URL, stream=True)
    with open(dest_path, 'wb') as fil:
        for chunk in req.iter_content(chunk_size=1024):
            if chunk:  # filter out keep-alive new chunks
                fil.write(chunk)


def setup_platform(hass, config, add_entities, discovery_info=None):
    """Set up the OpenCV image processing platform."""
    try:
        # Verify that the OpenCV python package is pre-installed
        # pylint: disable=unused-import,unused-variable
        import cv2  # noqa
    except ImportError:
        _LOGGER.error(
            "No OpenCV library found! Install or compile for your system "
            "following instructions here: http://opencv.org/releases.html")
        return

    entities = []
    if CONF_CLASSIFIER not in config:
        dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH)
        _get_default_classifier(dest_path)
        config[CONF_CLASSIFIER] = {
            'Face': dest_path
        }

    for camera in config[CONF_SOURCE]:
        entities.append(OpenCVImageProcessor(
            hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME),
            config[CONF_CLASSIFIER]))

    add_entities(entities)


class OpenCVImageProcessor(ImageProcessingEntity):
    """Representation of an OpenCV image processor."""

    def __init__(self, hass, camera_entity, name, classifiers):
        """Initialize the OpenCV entity."""
        self.hass = hass
        self._camera_entity = camera_entity
        if name:
            self._name = name
        else:
            self._name = "OpenCV {0}".format(split_entity_id(camera_entity)[1])
        self._classifiers = classifiers
        self._matches = {}
        self._total_matches = 0
        self._last_image = None

    @property
    def camera_entity(self):
        """Return camera entity id from process pictures."""
        return self._camera_entity

    @property
    def name(self):
        """Return the name of the image processor."""
        return self._name

    @property
    def state(self):
        """Return the state of the entity."""
        return self._total_matches

    @property
    def state_attributes(self):
        """Return device specific state attributes."""
        return {
            ATTR_MATCHES: self._matches,
            ATTR_TOTAL_MATCHES: self._total_matches
        }

    def process_image(self, image):
        """Process the image."""
        import cv2  # pylint: disable=import-error
        import numpy

        cv_image = cv2.imdecode(
            numpy.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)

        for name, classifier in self._classifiers.items():
            scale = DEFAULT_SCALE
            neighbors = DEFAULT_NEIGHBORS
            min_size = DEFAULT_MIN_SIZE
            if isinstance(classifier, dict):
                path = classifier[CONF_FILE]
                scale = classifier.get(CONF_SCALE, scale)
                neighbors = classifier.get(CONF_NEIGHBORS, neighbors)
                min_size = classifier.get(CONF_MIN_SIZE, min_size)
            else:
                path = classifier

            cascade = cv2.CascadeClassifier(path)

            detections = cascade.detectMultiScale(
                cv_image,
                scaleFactor=scale,
                minNeighbors=neighbors,
                minSize=min_size)
            matches = {}
            total_matches = 0
            regions = []
            # pylint: disable=invalid-name
            for (x, y, w, h) in detections:
                regions.append((int(x), int(y), int(w), int(h)))
                total_matches += 1

            matches[name] = regions

        self._matches = matches
        self._total_matches = total_matches