From fd8b43320dbc3b5618b14724d8de3e51859b2748 Mon Sep 17 00:00:00 2001 From: Thomas Dietrich Date: Thu, 25 Nov 2021 12:09:30 +0100 Subject: [PATCH] Replace returned STATE_UNKNOWN by None (#60324) --- homeassistant/components/statistics/sensor.py | 38 +++++++++---------- 1 file changed, 19 insertions(+), 19 deletions(-) diff --git a/homeassistant/components/statistics/sensor.py b/homeassistant/components/statistics/sensor.py index 6905170f470..5dc11b92729 100644 --- a/homeassistant/components/statistics/sensor.py +++ b/homeassistant/components/statistics/sensor.py @@ -481,7 +481,7 @@ class StatisticsSensor(SensorEntity): ) age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds() return area / age_range_seconds - return STATE_UNKNOWN + return None def _stat_average_step(self): if len(self.states) >= 2: @@ -493,7 +493,7 @@ class StatisticsSensor(SensorEntity): ) age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds() return area / age_range_seconds - return STATE_UNKNOWN + return None def _stat_average_timeless(self): return self._stat_mean() @@ -501,19 +501,19 @@ class StatisticsSensor(SensorEntity): def _stat_change(self): if len(self.states) > 0: return self.states[-1] - self.states[0] - return STATE_UNKNOWN + return None def _stat_change_sample(self): if len(self.states) > 1: return (self.states[-1] - self.states[0]) / (len(self.states) - 1) - return STATE_UNKNOWN + return None def _stat_change_second(self): if len(self.states) > 1: age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds() if age_range_seconds > 0: return (self.states[-1] - self.states[0]) / age_range_seconds - return STATE_UNKNOWN + return None def _stat_count(self): return len(self.states) @@ -521,37 +521,37 @@ class StatisticsSensor(SensorEntity): def _stat_datetime_newest(self): if len(self.states) > 0: return self.ages[-1] - return STATE_UNKNOWN + return None def _stat_datetime_oldest(self): if len(self.states) > 0: return self.ages[0] - return STATE_UNKNOWN + return None def _stat_distance_95_percent_of_values(self): if len(self.states) >= 2: return 2 * 1.96 * self._stat_standard_deviation() - return STATE_UNKNOWN + return None def _stat_distance_99_percent_of_values(self): if len(self.states) >= 2: return 2 * 2.58 * self._stat_standard_deviation() - return STATE_UNKNOWN + return None def _stat_distance_absolute(self): if len(self.states) > 0: return max(self.states) - min(self.states) - return STATE_UNKNOWN + return None def _stat_mean(self): if len(self.states) > 0: return statistics.mean(self.states) - return STATE_UNKNOWN + return None def _stat_median(self): if len(self.states) > 0: return statistics.median(self.states) - return STATE_UNKNOWN + return None def _stat_noisiness(self): if len(self.states) >= 2: @@ -559,7 +559,7 @@ class StatisticsSensor(SensorEntity): abs(j - i) for i, j in zip(list(self.states), list(self.states)[1:]) ) return diff_sum / (len(self.states) - 1) - return STATE_UNKNOWN + return None def _stat_quantiles(self): if len(self.states) > self._quantile_intervals: @@ -571,29 +571,29 @@ class StatisticsSensor(SensorEntity): method=self._quantile_method, ) ] - return STATE_UNKNOWN + return None def _stat_standard_deviation(self): if len(self.states) >= 2: return statistics.stdev(self.states) - return STATE_UNKNOWN + return None def _stat_total(self): if len(self.states) > 0: return sum(self.states) - return STATE_UNKNOWN + return None def _stat_value_max(self): if len(self.states) > 0: return max(self.states) - return STATE_UNKNOWN + return None def _stat_value_min(self): if len(self.states) > 0: return min(self.states) - return STATE_UNKNOWN + return None def _stat_variance(self): if len(self.states) >= 2: return statistics.variance(self.states) - return STATE_UNKNOWN + return None