Binary sensor for detecting linear trends (#9808)

* Trend sensor now uses linear regression to calculate trend

* Added numpy to trend sensor test requirements

* Added trendline tests

* Trend sensor now has max_samples attribute

* Trend sensor uses utcnow from HA utils

* Trend sensor now completes setup in async_added_to_hass

* Fixed linter issues

* Fixed broken import

* Trend tests make use of max_samples

* Added @asyncio.coroutine decorator to trend update callback

* Update trend.py
This commit is contained in:
Sam Birch 2017-10-26 04:33:17 +13:00 committed by Pascal Vizeli
parent 63c9d59d54
commit fc8940111d
5 changed files with 199 additions and 49 deletions

View file

@ -1,11 +1,13 @@
"""
A sensor that monitors trands in other components.
A sensor that monitors trends in other components.
For more details about this platform, please refer to the documentation at
https://home-assistant.io/components/sensor.trend/
"""
import asyncio
from collections import deque
import logging
import math
import voluptuous as vol
@ -16,21 +18,40 @@ from homeassistant.components.binary_sensor import (
BinarySensorDevice, ENTITY_ID_FORMAT, PLATFORM_SCHEMA,
DEVICE_CLASSES_SCHEMA)
from homeassistant.const import (
ATTR_FRIENDLY_NAME, ATTR_ENTITY_ID, CONF_DEVICE_CLASS, STATE_UNKNOWN)
ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME,
CONF_DEVICE_CLASS, CONF_ENTITY_ID, CONF_FRIENDLY_NAME,
STATE_UNKNOWN)
from homeassistant.helpers.entity import generate_entity_id
from homeassistant.helpers.event import track_state_change
from homeassistant.helpers.event import async_track_state_change
from homeassistant.util import utcnow
REQUIREMENTS = ['numpy==1.13.3']
_LOGGER = logging.getLogger(__name__)
ATTR_ATTRIBUTE = 'attribute'
ATTR_GRADIENT = 'gradient'
ATTR_MIN_GRADIENT = 'min_gradient'
ATTR_INVERT = 'invert'
ATTR_SAMPLE_DURATION = 'sample_duration'
ATTR_SAMPLE_COUNT = 'sample_count'
CONF_SENSORS = 'sensors'
CONF_ATTRIBUTE = 'attribute'
CONF_MAX_SAMPLES = 'max_samples'
CONF_MIN_GRADIENT = 'min_gradient'
CONF_INVERT = 'invert'
CONF_SAMPLE_DURATION = 'sample_duration'
SENSOR_SCHEMA = vol.Schema({
vol.Required(ATTR_ENTITY_ID): cv.entity_id,
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ATTRIBUTE): cv.string,
vol.Optional(ATTR_FRIENDLY_NAME): cv.string,
vol.Optional(CONF_INVERT, default=False): cv.boolean,
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
vol.Optional(CONF_INVERT, default=False): cv.boolean,
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
})
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
@ -43,17 +64,21 @@ def setup_platform(hass, config, add_devices, discovery_info=None):
"""Set up the trend sensors."""
sensors = []
for device, device_config in config[CONF_SENSORS].items():
for device_id, device_config in config[CONF_SENSORS].items():
entity_id = device_config[ATTR_ENTITY_ID]
attribute = device_config.get(CONF_ATTRIBUTE)
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device)
device_class = device_config.get(CONF_DEVICE_CLASS)
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
invert = device_config[CONF_INVERT]
max_samples = device_config[CONF_MAX_SAMPLES]
min_gradient = device_config[CONF_MIN_GRADIENT]
sample_duration = device_config[CONF_SAMPLE_DURATION]
sensors.append(
SensorTrend(
hass, device, friendly_name, entity_id, attribute,
device_class, invert)
hass, device_id, friendly_name, entity_id, attribute,
device_class, invert, max_samples, min_gradient,
sample_duration)
)
if not sensors:
_LOGGER.error("No sensors added")
@ -65,30 +90,23 @@ def setup_platform(hass, config, add_devices, discovery_info=None):
class SensorTrend(BinarySensorDevice):
"""Representation of a trend Sensor."""
def __init__(self, hass, device_id, friendly_name,
target_entity, attribute, device_class, invert):
def __init__(self, hass, device_id, friendly_name, entity_id,
attribute, device_class, invert, max_samples,
min_gradient, sample_duration):
"""Initialize the sensor."""
self._hass = hass
self.entity_id = generate_entity_id(
ENTITY_ID_FORMAT, device_id, hass=hass)
self._name = friendly_name
self._target_entity = target_entity
self._entity_id = entity_id
self._attribute = attribute
self._device_class = device_class
self._invert = invert
self._sample_duration = sample_duration
self._min_gradient = min_gradient
self._gradient = None
self._state = None
self.from_state = None
self.to_state = None
@callback
def trend_sensor_state_listener(entity, old_state, new_state):
"""Handle the target device state changes."""
self.from_state = old_state
self.to_state = new_state
hass.async_add_job(self.async_update_ha_state(True))
track_state_change(hass, target_entity,
trend_sensor_state_listener)
self.samples = deque(maxlen=max_samples)
@property
def name(self):
@ -105,33 +123,77 @@ class SensorTrend(BinarySensorDevice):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def device_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
ATTR_ENTITY_ID: self._entity_id,
ATTR_FRIENDLY_NAME: self._name,
ATTR_INVERT: self._invert,
ATTR_GRADIENT: self._gradient,
ATTR_MIN_GRADIENT: self._min_gradient,
ATTR_SAMPLE_DURATION: self._sample_duration,
ATTR_SAMPLE_COUNT: len(self.samples),
}
@property
def should_poll(self):
"""No polling needed."""
return False
@asyncio.coroutine
def async_update(self):
"""Get the latest data and update the states."""
if self.from_state is None or self.to_state is None:
return
if (self.from_state.state == STATE_UNKNOWN or
self.to_state.state == STATE_UNKNOWN):
return
def async_added_to_hass(self):
"""Complete device setup after being added to hass."""
@callback
def trend_sensor_state_listener(entity, old_state, new_state):
"""Handle state changes on the observed device."""
try:
if self._attribute:
from_value = float(
self.from_state.attributes.get(self._attribute))
to_value = float(
self.to_state.attributes.get(self._attribute))
state = new_state.attributes.get(self._attribute)
else:
from_value = float(self.from_state.state)
to_value = float(self.to_state.state)
state = new_state.state
if state != STATE_UNKNOWN:
sample = (utcnow().timestamp(), float(state))
self.samples.append(sample)
self.async_schedule_update_ha_state(True)
except (ValueError, TypeError) as ex:
_LOGGER.error(ex)
async_track_state_change(
self.hass, self._entity_id,
trend_sensor_state_listener)
@asyncio.coroutine
def async_update(self):
"""Get the latest data and update the states."""
# Remove outdated samples
if self._sample_duration > 0:
cutoff = utcnow().timestamp() - self._sample_duration
while self.samples and self.samples[0][0] < cutoff:
self.samples.popleft()
if len(self.samples) < 2:
return
# Calculate gradient of linear trend
yield from self.hass.async_add_job(self._calculate_gradient)
# Update state
self._state = (
abs(self._gradient) > abs(self._min_gradient) and
math.copysign(self._gradient, self._min_gradient) == self._gradient
)
self._state = to_value > from_value
if self._invert:
self._state = not self._state
except (ValueError, TypeError) as ex:
self._state = None
_LOGGER.error(ex)
def _calculate_gradient(self):
"""Compute the linear trend gradient of the current samples.
This need run inside executor.
"""
import numpy as np
timestamps = np.array([t for t, _ in self.samples])
values = np.array([s for _, s in self.samples])
coeffs = np.polyfit(timestamps, values, 1)
self._gradient = coeffs[0]

View file

@ -468,6 +468,7 @@ netdisco==1.2.2
# homeassistant.components.sensor.neurio_energy
neurio==0.3.1
# homeassistant.components.binary_sensor.trend
# homeassistant.components.image_processing.opencv
numpy==1.13.3

View file

@ -87,6 +87,10 @@ libsoundtouch==0.7.2
# homeassistant.components.switch.mfi
mficlient==0.3.0
# homeassistant.components.binary_sensor.trend
# homeassistant.components.image_processing.opencv
numpy==1.13.3
# homeassistant.components.mqtt
# homeassistant.components.shiftr
paho-mqtt==1.3.1

View file

@ -55,6 +55,7 @@ TEST_REQUIREMENTS = (
'libpurecoollink',
'libsoundtouch',
'mficlient',
'numpy',
'paho-mqtt',
'pexpect',
'pilight',

View file

@ -38,6 +38,67 @@ class TestTrendBinarySensor:
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'on'
def test_up_using_trendline(self):
"""Test up trend using multiple samples and trendline calculation."""
assert setup.setup_component(self.hass, 'binary_sensor', {
'binary_sensor': {
'platform': 'trend',
'sensors': {
'test_trend_sensor': {
'entity_id': "sensor.test_state",
'sample_duration': 300,
'min_gradient': 1,
'max_samples': 25,
}
}
}
})
for val in [1, 0, 2, 3]:
self.hass.states.set('sensor.test_state', val)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'on'
for val in [0, 1, 0, 0]:
self.hass.states.set('sensor.test_state', val)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'off'
def test_down_using_trendline(self):
"""Test down trend using multiple samples and trendline calculation."""
assert setup.setup_component(self.hass, 'binary_sensor', {
'binary_sensor': {
'platform': 'trend',
'sensors': {
'test_trend_sensor': {
'entity_id': "sensor.test_state",
'sample_duration': 300,
'min_gradient': 1,
'max_samples': 25,
'invert': 'Yes'
}
}
}
})
for val in [3, 2, 3, 1]:
self.hass.states.set('sensor.test_state', val)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'on'
for val in [4, 2, 4, 4]:
self.hass.states.set('sensor.test_state', val)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'off'
def test_down(self):
"""Test down trend."""
assert setup.setup_component(self.hass, 'binary_sensor', {
@ -59,7 +120,7 @@ class TestTrendBinarySensor:
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'off'
def test__invert_up(self):
def test_invert_up(self):
"""Test up trend with custom message."""
assert setup.setup_component(self.hass, 'binary_sensor', {
'binary_sensor': {
@ -142,11 +203,33 @@ class TestTrendBinarySensor:
self.hass.states.set('sensor.test_state', 'State', {'attr': '2'})
self.hass.block_till_done()
self.hass.states.set('sensor.test_state', 'State', {'attr': '1'})
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'off'
def test_max_samples(self):
"""Test that sample count is limited correctly."""
assert setup.setup_component(self.hass, 'binary_sensor', {
'binary_sensor': {
'platform': 'trend',
'sensors': {
'test_trend_sensor': {
'entity_id': "sensor.test_state",
'max_samples': 3,
'min_gradient': -1,
}
}
}
})
for val in [0, 1, 2, 3, 2, 1]:
self.hass.states.set('sensor.test_state', val)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'on'
assert state.attributes['sample_count'] == 3
def test_non_numeric(self):
"""Test up trend."""
assert setup.setup_component(self.hass, 'binary_sensor', {
@ -186,7 +269,6 @@ class TestTrendBinarySensor:
self.hass.states.set('sensor.test_state', 'State', {'attr': '2'})
self.hass.block_till_done()
self.hass.states.set('sensor.test_state', 'State', {'attr': '1'})
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_trend_sensor')
assert state.state == 'off'