[WIP] Fix opencv (#7864)

* Updates to opencv image processor

* Remove opencv hub

* Requirements

* Remove extra line

* Fix linting errors

* Indentation

* Requirements

* Linting

* Check for import on platform setup

* Remove opencv requirement

* Linting

* fix style

* fix lint
This commit is contained in:
Teagan Glenn 2017-06-08 03:26:24 -06:00 committed by Pascal Vizeli
parent 482db94372
commit 97f62cfb78
3 changed files with 124 additions and 220 deletions

View file

@ -7,22 +7,56 @@ https://home-assistant.io/components/image_processing.opencv/
from datetime import timedelta
import logging
import requests
import voluptuous as vol
from homeassistant.core import split_entity_id
from homeassistant.components.image_processing import (
ImageProcessingEntity, PLATFORM_SCHEMA)
from homeassistant.components.opencv import (
ATTR_MATCHES, CLASSIFIER_GROUP_CONFIG, CONF_CLASSIFIER, CONF_ENTITY_ID,
CONF_NAME, process_image)
CONF_SOURCE, CONF_ENTITY_ID, CONF_NAME, PLATFORM_SCHEMA,
ImageProcessingEntity)
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['numpy==1.12.0']
_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = ['opencv']
ATTR_MATCHES = 'matches'
ATTR_TOTAL_MATCHES = 'total_matches'
CASCADE_URL = \
'https://raw.githubusercontent.com/opencv/opencv/master/data/' + \
'lbpcascades/lbpcascade_frontalface.xml'
CONF_CLASSIFIER = 'classifer'
CONF_FILE = 'file'
CONF_MIN_SIZE = 'min_size'
CONF_NEIGHBORS = 'neighbors'
CONF_SCALE = 'scale'
DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DEFAULT_TIMEOUT = 10
SCAN_INTERVAL = timedelta(seconds=2)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(CLASSIFIER_GROUP_CONFIG)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_CLASSIFIER, default=None): {
cv.string: vol.Any(
cv.isfile,
vol.Schema({
vol.Required(CONF_FILE): cv.isfile,
vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
cv.positive_int,
vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
vol.Schema((int, int))
})
)
}
})
def _create_processor_from_config(hass, camera_entity, config):
@ -37,41 +71,63 @@ def _create_processor_from_config(hass, camera_entity, config):
return processor
def _get_default_classifier(dest_path):
"""Download the default OpenCV classifier."""
_LOGGER.info('Downloading default classifier')
req = requests.get(CASCADE_URL, stream=True)
with open(dest_path, 'wb') as fil:
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
fil.write(chunk)
def setup_platform(hass, config, add_devices, discovery_info=None):
"""Set up the OpenCV image processing platform."""
if discovery_info is None:
try:
# Verify opencv python package is preinstalled
# pylint: disable=unused-import,unused-variable
import cv2 # noqa
except ImportError:
_LOGGER.error("No opencv library found! " +
"Install or compile for your system " +
"following instructions here: " +
"http://opencv.org/releases.html")
return
devices = []
for camera_entity in discovery_info[CONF_ENTITY_ID]:
devices.append(
_create_processor_from_config(hass, camera_entity, discovery_info))
entities = []
if config[CONF_CLASSIFIER] is None:
dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH)
_get_default_classifier(dest_path)
config[CONF_CLASSIFIER] = {
'Face': dest_path
}
add_devices(devices)
for camera in config[CONF_SOURCE]:
entities.append(OpenCVImageProcessor(
hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME),
config[CONF_CLASSIFIER]
))
add_devices(entities)
class OpenCVImageProcessor(ImageProcessingEntity):
"""Representation of an OpenCV image processor."""
def __init__(self, hass, camera_entity, name, classifier_configs):
def __init__(self, hass, camera_entity, name, classifiers):
"""Initialize the OpenCV entity."""
self.hass = hass
self._camera_entity = camera_entity
self._name = name
self._classifier_configs = classifier_configs
if name:
self._name = name
else:
self._name = "OpenCV {0}".format(
split_entity_id(camera_entity)[1])
self._classifiers = classifiers
self._matches = {}
self._total_matches = 0
self._last_image = None
@property
def last_image(self):
"""Return the last image."""
return self._last_image
@property
def matches(self):
"""Return the matches it found."""
return self._matches
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
@ -85,20 +141,54 @@ class OpenCVImageProcessor(ImageProcessingEntity):
@property
def state(self):
"""Return the state of the entity."""
total_matches = 0
for group in self._matches.values():
total_matches += len(group)
return total_matches
return self._total_matches
@property
def state_attributes(self):
"""Return device specific state attributes."""
return {
ATTR_MATCHES: self._matches
ATTR_MATCHES: self._matches,
ATTR_TOTAL_MATCHES: self._total_matches
}
def process_image(self, image):
"""Process the image."""
self._last_image = image
self._matches = process_image(
image, self._classifier_configs, False)
import cv2 # pylint: disable=import-error
import numpy
# pylint: disable=no-member
cv_image = cv2.imdecode(numpy.asarray(bytearray(image)),
cv2.IMREAD_UNCHANGED)
for name, classifier in self._classifiers.items():
scale = DEFAULT_SCALE
neighbors = DEFAULT_NEIGHBORS
min_size = DEFAULT_MIN_SIZE
if isinstance(classifier, dict):
path = classifier[CONF_FILE]
scale = classifier.get(CONF_SCALE, scale)
neighbors = classifier.get(CONF_NEIGHBORS, neighbors)
min_size = classifier.get(CONF_MIN_SIZE, min_size)
else:
path = classifier
# pylint: disable=no-member
cascade = cv2.CascadeClassifier(path)
detections = cascade.detectMultiScale(
cv_image,
scaleFactor=scale,
minNeighbors=neighbors,
minSize=min_size)
matches = {}
total_matches = 0
regions = []
# pylint: disable=invalid-name
for (x, y, w, h) in detections:
regions.append((int(x), int(y), int(w), int(h)))
total_matches += 1
matches[name] = regions
self._matches = matches
self._total_matches = total_matches

View file

@ -1,183 +0,0 @@
"""
Support for OpenCV image/video processing.
For more details about this component, please refer to the documentation at
https://home-assistant.io/components/opencv/
"""
import logging
import os
import voluptuous as vol
import requests
from homeassistant.const import (
CONF_NAME,
CONF_ENTITY_ID,
CONF_FILE_PATH
)
from homeassistant.helpers import (
discovery,
config_validation as cv,
)
REQUIREMENTS = ['opencv-python==3.2.0.6', 'numpy==1.12.0']
_LOGGER = logging.getLogger(__name__)
ATTR_MATCHES = 'matches'
BASE_PATH = os.path.realpath(__file__)
CASCADE_URL = \
'https://raw.githubusercontent.com/opencv/opencv/master/data/' +\
'lbpcascades/lbpcascade_frontalface.xml'
CONF_CLASSIFIER = 'classifier'
CONF_COLOR = 'color'
CONF_GROUPS = 'classifier_group'
CONF_MIN_SIZE = 'min_size'
CONF_NEIGHBORS = 'neighbors'
CONF_SCALE = 'scale'
DATA_CLASSIFIER_GROUPS = 'classifier_groups'
DEFAULT_COLOR = (255, 255, 0)
DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_NAME = 'OpenCV'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DOMAIN = 'opencv'
CLASSIFIER_GROUP_CONFIG = {
vol.Required(CONF_CLASSIFIER): vol.All(
cv.ensure_list,
[vol.Schema({
vol.Optional(CONF_COLOR, default=DEFAULT_COLOR):
vol.Schema((int, int, int)),
vol.Optional(CONF_FILE_PATH, default=None): cv.isfile,
vol.Optional(CONF_NAME, default=DEFAULT_NAME):
cv.string,
vol.Optional(CONF_MIN_SIZE, default=DEFAULT_MIN_SIZE):
vol.Schema((int, int)),
vol.Optional(CONF_NEIGHBORS, default=DEFAULT_NEIGHBORS):
cv.positive_int,
vol.Optional(CONF_SCALE, default=DEFAULT_SCALE):
float
})]),
vol.Required(CONF_ENTITY_ID): cv.entity_ids,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
}
CLASSIFIER_GROUP_SCHEMA = vol.Schema(CLASSIFIER_GROUP_CONFIG)
CONFIG_SCHEMA = vol.Schema({
DOMAIN: vol.Schema({
vol.Required(CONF_GROUPS): vol.All(
cv.ensure_list,
[CLASSIFIER_GROUP_SCHEMA]
),
})
}, extra=vol.ALLOW_EXTRA)
# NOTE:
# pylint cannot find any of the members of cv2, using disable=no-member
# to pass linting
def cv_image_to_bytes(cv_image):
"""Convert OpenCV image to bytes."""
import cv2 # pylint: disable=import-error
# pylint: disable=no-member
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90]
# pylint: disable=no-member
success, data = cv2.imencode('.jpg', cv_image, encode_param)
if success:
return data.tobytes()
return None
def cv_image_from_bytes(image):
"""Convert image bytes to OpenCV image."""
import cv2 # pylint: disable=import-error
import numpy
# pylint: disable=no-member
return cv2.imdecode(numpy.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
def process_image(image, classifier_group, is_camera):
"""Process the image given a classifier group."""
import cv2 # pylint: disable=import-error
import numpy
# pylint: disable=no-member
cv_image = cv2.imdecode(numpy.asarray(bytearray(image)),
cv2.IMREAD_UNCHANGED)
group_matches = {}
for classifier_config in classifier_group:
classifier_path = classifier_config[CONF_FILE_PATH]
classifier_name = classifier_config[CONF_NAME]
color = classifier_config[CONF_COLOR]
scale = classifier_config[CONF_SCALE]
neighbors = classifier_config[CONF_NEIGHBORS]
min_size = classifier_config[CONF_MIN_SIZE]
# pylint: disable=no-member
classifier = cv2.CascadeClassifier(classifier_path)
detections = classifier.detectMultiScale(cv_image,
scaleFactor=scale,
minNeighbors=neighbors,
minSize=min_size)
regions = []
# pylint: disable=invalid-name
for (x, y, w, h) in detections:
if is_camera:
# pylint: disable=no-member
cv2.rectangle(cv_image,
(x, y),
(x + w, y + h),
color,
2)
else:
regions.append((int(x), int(y), int(w), int(h)))
group_matches[classifier_name] = regions
if is_camera:
return cv_image_to_bytes(cv_image)
else:
return group_matches
def setup(hass, config):
"""Set up the OpenCV platform entities."""
default_classifier = hass.config.path(DEFAULT_CLASSIFIER_PATH)
if not os.path.isfile(default_classifier):
_LOGGER.info('Downloading default classifier')
req = requests.get(CASCADE_URL, stream=True)
with open(default_classifier, 'wb') as fil:
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
fil.write(chunk)
for group in config[DOMAIN][CONF_GROUPS]:
grp = {}
for classifier, config in group.items():
config = dict(config)
if config[CONF_FILE_PATH] is None:
config[CONF_FILE_PATH] = default_classifier
grp[classifier] = config
discovery.load_platform(hass, 'image_processing', DOMAIN, grp)
return True

View file

@ -387,7 +387,7 @@ netdisco==1.0.1
# homeassistant.components.sensor.neurio_energy
neurio==0.3.1
# homeassistant.components.opencv
# homeassistant.components.image_processing.opencv
numpy==1.12.0
# homeassistant.components.google
@ -399,9 +399,6 @@ oemthermostat==1.1
# homeassistant.components.media_player.onkyo
onkyo-eiscp==1.1
# homeassistant.components.opencv
# opencv-python==3.2.0.6
# homeassistant.components.sensor.openevse
openevsewifi==0.4