hass-core/homeassistant/components/image_processing/facebox.py

135 lines
4 KiB
Python
Raw Normal View History

"""
Component that will perform facial detection and identification via facebox.
For more details about this platform, please refer to the documentation at
https://home-assistant.io/components/image_processing.facebox
"""
import base64
import logging
import requests
import voluptuous as vol
from homeassistant.const import ATTR_NAME
from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv
from homeassistant.components.image_processing import (
PLATFORM_SCHEMA, ImageProcessingFaceEntity, ATTR_CONFIDENCE, CONF_SOURCE,
CONF_ENTITY_ID, CONF_NAME)
from homeassistant.const import (CONF_IP_ADDRESS, CONF_PORT)
_LOGGER = logging.getLogger(__name__)
ATTR_BOUNDING_BOX = 'bounding_box'
ATTR_IMAGE_ID = 'image_id'
ATTR_MATCHED = 'matched'
CLASSIFIER = 'facebox'
TIMEOUT = 9
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_IP_ADDRESS): cv.string,
vol.Required(CONF_PORT): cv.port,
})
def encode_image(image):
"""base64 encode an image stream."""
base64_img = base64.b64encode(image).decode('ascii')
return base64_img
def get_matched_faces(faces):
"""Return the name and rounded confidence of matched faces."""
return {face['name']: round(face['confidence'], 2)
for face in faces if face['matched']}
def parse_faces(api_faces):
"""Parse the API face data into the format required."""
known_faces = []
for entry in api_faces:
face = {}
if entry['matched']: # This data is only in matched faces.
face[ATTR_NAME] = entry['name']
face[ATTR_IMAGE_ID] = entry['id']
else: # Lets be explicit.
face[ATTR_NAME] = None
face[ATTR_IMAGE_ID] = None
face[ATTR_CONFIDENCE] = round(100.0*entry['confidence'], 2)
face[ATTR_MATCHED] = entry['matched']
face[ATTR_BOUNDING_BOX] = entry['rect']
known_faces.append(face)
return known_faces
def setup_platform(hass, config, add_devices, discovery_info=None):
"""Set up the classifier."""
entities = []
for camera in config[CONF_SOURCE]:
entities.append(FaceClassifyEntity(
config[CONF_IP_ADDRESS],
config[CONF_PORT],
camera[CONF_ENTITY_ID],
camera.get(CONF_NAME)
))
add_devices(entities)
class FaceClassifyEntity(ImageProcessingFaceEntity):
"""Perform a face classification."""
def __init__(self, ip, port, camera_entity, name=None):
"""Init with the API key and model id."""
super().__init__()
self._url = "http://{}:{}/{}/check".format(ip, port, CLASSIFIER)
self._camera = camera_entity
if name:
self._name = name
else:
camera_name = split_entity_id(camera_entity)[1]
self._name = "{} {}".format(
CLASSIFIER, camera_name)
self._matched = {}
def process_image(self, image):
"""Process an image."""
response = {}
try:
response = requests.post(
self._url,
json={"base64": encode_image(image)},
timeout=TIMEOUT
).json()
except requests.exceptions.ConnectionError:
_LOGGER.error("ConnectionError: Is %s running?", CLASSIFIER)
response['success'] = False
if response['success']:
total_faces = response['facesCount']
faces = parse_faces(response['faces'])
self._matched = get_matched_faces(faces)
self.process_faces(faces, total_faces)
else:
self.total_faces = None
self.faces = []
self._matched = {}
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
return self._camera
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def device_state_attributes(self):
"""Return the classifier attributes."""
return {
'matched_faces': self._matched,
}